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Abstract

In order to mitigate the high communication cost in distributed and federated learning, various vector
compression schemes, such as quantization, sparsification and dithering, have become very popular. In designing a
compression method, one aims to communicate as few bits as possible, which minimizes the cost per communication
round, while at the same time attempting to impart as little distortion (variance) to the communicated messages
as possible, which minimizes the adverse effect of the compression on the overall number of communication
rounds. However, intuitively, these two goals are fundamentally in conflict: the more compression we allow,
the more distorted the messages become. We formalize this intuition and prove an uncertainty principle for
randomized compression operators, thus quantifying this limitation mathematically, and effectively providing
lower bounds on what might be achievable with communication compression. Motivated by these developments,
we call for the search for the optimal compression operator. In an attempt to take a first step in this direction,
we construct a new unbiased compression method inspired by the Kashin representation of vectors, which we call
Kashin compression (KC). In contrast to all previously proposed compression mechanisms, we prove that KC
enjoys a dimension independent variance bound with an explicit formula even in the regime when only a few bits
need to be communicate per each vector entry. We show how KC can be provably and efficiently combined with
several existing optimization algorithms, in all cases leading to communication complexity improvements on
previous state of the art.
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1 Introduction

In the quest for high accuracy machine learning models, both the size of the model and consequently the amount of
data necessary to train the model have been hugely increased over time (Schmidhuber, 2015; Vaswani et al., 2019).
Because of this, performing the learning process on a single machine is often infeasible. In a typical scenario of
distributed learning, the training data (and possibly the model as well) is spread across different machines and
thus the process of training is done in a distributed manner (Bekkerman et al., 2011; Vogels et al., 2019). Another
scenario, most common to federated learning (Konečný et al., 2016; McMahan et al., 2017; Karimireddy et al.,
2019a), is when training data is inherently distributed across a large number of mobile edge devices due to data
privacy concerns.

1.1 Communication bottleneck

In all cases of distributed learning and federated learning, information (e.g. current stochastic gradient vector
or current state of the model) communication between computing nodes is inevitable, which forms the primary
bottleneck of such systems (Zhang et al., 2017; Lin et al., 2018). This issue is especially apparent in federated learning,
where computing nodes are devices with essentially inferior power and the network bandwidth is considerably slow
(Li et al., 2019).

There are two general approaches to address/tackle this problem. One line of research dedicated to so-called
local methods suggests to do more computational work before each communication in the hope that those would
increase the worth/impact/value of the information to be communicated (Goyal et al., 2017; Wangni et al., 2018;
Stich, 2018; Khaled et al., 2020). An alternative approach investigates inexact/lossy information compression
strategies which aim to send approximate but relevant information encoded with less number of bits. In this work
we focus on the second approach of compressed learning. Research in this latter stream splits into two orthogonal
directions. To explore savings in communication, various (mostly randomized) compression operators have been
proposed and analyzed such as random sparsification (Konečný & Richtárik, 2018; Wangni et al., 2018), top-k
sparsification (Alistarh et al., 2018), standard random dithering (Goodall, 1951; Roberts, 1962; Alistarh et al., 2017),
natural dithering (Horváth et al., 2019a), ternary quantization (Wen et al., 2017), and scaled sign quantization
(Karimireddy et al., 2019b; Bernstein et al., 2018, 2019; Liu et al., 2019). Table 1 summarizes the most common
compression methods with their variances and the number of encoding bits.

In designing a compression operator, one aims to (i) encode the compressed information with as few bits as
possible, which minimizes the cost per communication round, and (ii) introduce as little noise (variance) to the
communicated messages as possible, which minimizes the adverse effect of the compression on the overall iteration
complexity.
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Table 1: Compression operators in U(ω) and B(α).

Compression Method Unbiased? Variance ω Variance α Bits b (in binary32 )

Random sparsification yes d
k
− 1 ≈ O( d

k
) 32k + log2

(
d
k

)
Top-k sparsification no 1− k

d
32k + log2

(
d
k

)
Standard Dithering yes min(

√
d
s
, d
s2

) ≈ O(
√
d
s

) 31 + d log2(2s+ 1)

Natural Dithering yes min(
√
d

2s−1 ,
d

22−2s ) ≈ O(
√
d

2s−1 ) 31 + d log2(2s+ 1)

Ternary Quantization yes
√
d− 1 ≈ O(

√
d) 31 + d log2 3

Scaled Sign Quantization no 1− 1
d

31 + d

Kashin Compression (new) yes
(
10
√
λ/
√
λ−1

)4 ≈ O(1) 31 + log2 3 · λd1

Table 2: Iteration complexities of different learning algorithms with respect to the variance of compression.

Optimization Algorithm Objective Function Iteration complexity

Compressed GD (Khirirat et al., 2018) smooth, strongly convex O (κ(ω + 1) log 1/ε)
DIANA (Horváth et al., 2019b) smooth, strongly convex O

(
(κ+ ω κ

n
+ ω) log 1/ε

)
Distributed SGD (Horváth et al., 2019a) smooth, non-convex O

(
(ω + 1)21/ε2

)
DoublSqueeze (Tang et al., 2019) smooth, non-convex O

(
1/ε2 + 1

1−α2
1/ε1.5

)

1.2 Compressed learning

In order to utilize these compression methods efficiently, a lot of research has been devoted to the study of learning
algorithms with compressed communication. Obviously, the presence of compression in a learning algorithm affects
the training process and since compression operator encodes the original information approximately, it should be
anticipated to increase the number of communication rounds. Table 2 highlights four gradient-type compressed
learning algorithms with their corresponding setup and iteration complexity:

(i) distributed Gradient Descent (GD) with compressed gradients (Khirirat et al., 2018),

(ii) distributed Stochastic Gradient Descent (SGD) with gradient quantization and compression variance reduction
(Horváth et al., 2019b),

(iii) distributed SGD with bi-directional gradient compression (Horváth et al., 2019a), and

(iv) distributed SGD with gradient compression and twofold error compensation (Tang et al., 2019).

In all cases, the iteration complexity depends on the variance (ω or α) of the underlying compression scheme
and grows as more compression is applied. For this reason, we are interested in compression methods which save
in communication by using less bits and minimize iteration complexity by introducing lower variance. However,
intuitively and also evidently from Table 1, these two goals are in fundamental conflict, i.e. requiring fewer bits to
be communicated in each round introduces higher variance, and demanding small variance forces more bits to be
communicated.

1.3 Contributions

The contributions of our work are:

• Uncertainty Principle. We formalize this intuitive trade-off and prove an uncertainty principle for ran-
domized compression operators, which quantifies this limitation mathematically with the inequality

α · 4b/d ≥ 1 , (1)

1In fact, the number of encoding bits depends on the quantization operator used in KC. Mentioned formula is for ternary quantization.
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Figure 1: Comparison of the most common compression methods based on their normalized variance α ∈ [0, 1]
and the average number of encoding bits per coordinate. Each color represents one compression method, each
marker indicates one particular d = 103 dimensional vector randomly generated from Gaussian distribution, which
subsequently gets compressed by the compression operator mentioned in the legend. Dashed red line shows the
lower of bound of the uncertainty principle (1). The Kashin compressor and the uncertainty principle are the key
contributions of this paper.

where α ∈ [0, 1] is the normalized variance / contraction factor associated with the compression operator
(Definition 1), b is the number of bits required to encode the compressed vector and d is the dimension of the
vector to be compressed. The notion of Uncertainty Principle (UP) for compression operators is introduced
and theoretically proved in this paper. It is a universal property of compressed communication, completely
independent of the optimization algorithm and the problem that distributed training is trying to solve. We
visualize this fascinating principle in Figure 1, where we computed many possible combinations of parameters
α and b/d for various compression methods. The dashed red line indicating the lower bound (1) bounds all
possible combinations of all compression operators, thus validating the obtained uncertainty principle for
randomized compression operators.

• Kashin Compression. Motivated by this principle, we then focus on the search for the optimal compression
operator. In an attempt to take a first step in this direction, we design a new unbiased compression operator
inspired by Kashin representation of vectors (Kashin, 1977), which we call Kashin Compression (KC). In
contrast to all previously proposed compression methods, we prove that KC enjoys a dimension independent
variance bound even in a severe compression regime when only a few bits per coordinate can be communicated.
We give an explicit formula for the variance bound and show how KC can be provably and efficiently combined
with several existing optimization algorithms, in all cases leading to communication complexity improvements
on previous state of the art. We believe that KC has the potential to play a role in the discovery of an optimal
compression method, perhaps when composed with some other operators, such as dithering.

• Experimental Validations. In our experiments, we observed the superiority of KC in terms of communi-
cation savings and stabilization property when compared against a vast array of compressors proposed in
the literature. In particular, Figure 1 justifies that KC combined with Top-k sparsification and dithering
operators yields a compression method which almost closes the gap to the UP. Kashin’s representation has
been used heuristically in federated learning (Caldas et al., 2019) to mitigate the communication cost. In
contrast to this work, we generate the initial tight frame of KC randomly as suggested by the theory, and tune
the parameters accordingly. Moreover, we consider combinations of KC and other compression techniques
such as ternary quantization, Top-k sparsification and dithering. We believe KC should be of high interest in
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federated and distributed learning.

2 Uncertainty principle for compression operators

In general, an uncertainty principle refers to any type of mathematical inequality expressing some fundamental trade-
off between two measurements. The classical Heisenberg’s uncertainty principle in quantum mechanics (Heisenberg,
1927) shows the trade-off between the position and momentum of a particle. In harmonic analysis, the uncertainty
principle limits the localization of values of a function and its Fourier transform at the same time (Havin & Jöricke,
1994). Alternatively in the context of signal processing, signals cannot be simultaneously localized in both time
domain and frequency domain (Gabor, 1946). The uncertainty principle in communication deals with the quite
intuitive trade-off between information compression (encoding bits) and approximation error (variance), namely
more compression forces heavier distortion to communicated messages and tighter approximation requires less
information compression.

In this section, we present our UP for communication compression revealing the trade-off between encoding bits
of compressed information and the variance produced by compression operator. First, we describe our UP for a
general class of biased compressions. Afterwards, we specialize it to the class of unbiased compressions.

2.1 UP for biased compressions

We work with the class of biased compression operators which are contractive.

Definition 1 (Biased Compressions) Let B(α) be the class of biased (and possibly randomized) compression
operators C : Rd → Rd with α ∈ [0, 1] contractive property, i.e. for any x ∈ Rd

E
[
‖C(x)− x‖22

]
≤ α‖x‖22. (2)

The parameter α can be seen as the normalized variance of the compression operator. Note that the compression
C does not need to be randomized to belong to this class. For instance, Top-k sparsification operator satisfies (2)
without the expectation for α = 1− k/d. Next, we formalize our uncertainty principle for the class B(α).

Theorem 1 Let C : Rd → Rd be any compression operator from B(α) and b be the total number of bits needed to
encode the compressed vector C(x) for any x ∈ Rd. Then the following form of uncertainty principle holds

α · 4b/d ≥ 1. (3)

One can view the binary32 and binary64 floating-points formats as biased compression methods for the actual real
numbers (i.e. d = 1), using only 32 and 64 bits respectively to represent a single number. Intuitively, these formats
have their precision (i.e.

√
α) limits and the uncertainty principle (3) shows that the precision cannot be better

than 2−32 for binary32 format and 2−64 for binary64 format. Thus, any floating-point format representing a single
number with r bits has precision constraint of 2−r, where the base 2 stems from the binary nature of the bit.

Furthermore, notice that compression operators can achieve zero variance in some settings, e.g. ternary or scaled
sign quantization when d = 1 (see Table 1). On the other hand, the UP (3) implies that the normalized variance
α > 0 for any finite bits b. The reason for this inconsistency comes from the fact that, for instance, the binary32
format encodes any number with 32 bits and the error 2−32 is usually ignored in practice. We can adjust our UP to
any digital format, using r bits per single number, as(

α+ 4−r
)
· 4b/d ≥ 1. (4)

2.2 UP for unbiased compressions

We now specialize our UP to the class of unbiased compressions. First, we recall the definition of unbiased
compression operators with a given variance.

Definition 2 (Unbiased Compressions) Denote by U(ω) the class of unbiased compression operators C : Rd →
Rd with variance ω > 0, that is, for any x ∈ Rd

E [C(x)] = x, E
[
‖C(x)− x‖22

]
≤ ω‖x‖22. (5)
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To establish an uncertainty principle for C ∈ U(ω), we show that all unbiased compression operators with the
proper scaling factor are included in B(α).

Lemma 1 If C ∈ U(ω), then 1
ω+1C ∈ B( ω

ω+1 ).

Using this inclusion, we can apply Theorem 1 to the class U(ω) and derive an uncertainty principle for unbiased
compression operators.

Theorem 2 Let C : Rd → Rd be any unbiased compression operator with variance ω ≥ 0 and b be the total number
of bits needed to encode the compressed vector C(x) for any x ∈ Rd. Then the uncertainty principle takes the form

ω

ω + 1
· 4b/d ≥ 1. (6)

3 Compression with regular polytopes

Here we describe an unbiased compression scheme based on regular polytopes. With this particular compression we
illustrate that it is possible for unbiased compressions to have dimension independent variance bounds and at the
same time communicate a few bits per coordinate.

Let x ∈ Rd be the vector that we need to communicate. First, we project the vector on the unit sphere

Sd−1 = {x ∈ Rd : ‖x‖2 = 1},

thus separating the magnitude ‖x‖2 ∈ R from the direction x/‖x‖2 ∈ Sd−1. The magnitude is a dimension
independent scalar value and we can transfer it cheaply, say by 32 bits. To encode the unit vector x/‖x‖2 we
approximate the unit sphere by regular polytopes and then randomize over the vertices of the polytope. Polytopes
can be seen as generalizations of planar polygons in high dimensions. Formally, let Pm be a regular polytope with
vertices {v1, v2, . . . , vm} ⊂ Rd such that it contains the unit sphere, i.e. Sd−1 ⊂ Pm, and all vertices are on the
sphere of radius R > 1. Then, any unit vector v ∈ Sd−1 can be expressed as a convex combination

∑m
k=1 wkvk with

some non-negative weights wk = wk(x). Equivalently, v can be expressed as an expectation of a random vector over
vk with probabilities wk. Therefore, the direction x/‖x‖2 could be encoded with roughly logm bits and the variance
ω of compression will depend on the approximation, more specifically ω = R2 − 1. Kochol (2004, 1994) gave a
constructive proof on approximation of the d−dimensional unit sphere by regular polytopes with m ≥ 2d vertices

for which ω = O
(

d
log m/d

)
. So, choosing the number of vertices to be m = 2d, we get an unbiased compression

operator with O(1) variance (independent of dimension d) and with 1 bit per coordinate encoding.
However, this method does not seem to be practical as 2d vertices of the polytope either need to be stored or

computed each time they are used, which is infeasible for large dimensions.

4 Compression with Kashin’s representation

In this section we introduce the notion of Kashin’s representation, the algorithm of Lyubarskii & Vershynin (2010)
on computing it efficiently and then describe the quantization step.

4.1 Representation systems

The most common way of compressing a given vector x ∈ Rd is to use its orthogonal representation with respect to
the standard basis (ei)

d
i=1 in Rd:

x =

d∑
i=1

xiei, xi = 〈x, ei〉 .

However, the restriction of orthogonal expansions is that coefficients xi are independent in the sense that if we
lost one of them, then we cannot recover it even approximately. Furthermore, each coefficient xi may carry very
different portion of the total information that vector x contains; some coefficients may carry more information than
others and thus be more sensitive to compression.

6



Algorithm 1 Computing Kashin’s representation

Input: orthogonal d × D matrix U which satisfies RIP with parameters δ, η ∈ (0, 1), a vector x ∈ Rd and a
number of iterations r.
Initialize a = 0 ∈ RD, M = ‖x‖2/

√
δD.

repeat r times
b = U>x
b̂ = sign(b) ·min(|b|,M)

x = x− Ub̂
a = a+ b̂
M = ηM
return a
Output: Kashin’s coefficients of x with level K = 1/(

√
δ(1− η)) and with accuracy ηr‖x‖2, i.e.

‖x− Ua‖2 ≤ η
r‖x‖2, max

1≤i≤D
|ai| ≤

K√
D
‖x‖2.

For this reason, it is preferable to use tight frames and frame representations instead. Tight frames are
generalizations of orthonormal bases, where the system of vectors are not required to be linearly independent.
Formally, vectors (ui)

D
i=1 in Rd form a tight frame if any vector x ∈ Rd admits a frame representation

x =

D∑
i=1

aiui, ai = 〈x, ui〉 . (7)

Clearly, if D > d (the case we are interested in), then the system (ui)
D
i=1 is linearly dependent and hence the

representation (7) with coefficients ai is not unique. The idea is to exploit this redundancy and choose coefficients
ai in such a way to spread the information uniformly among these coefficients. However, the frame representation
may not distribute the information well enough. Thus, we need a particular representation for which coefficients ai
have smallest possible dynamic range.

For a frame (ui)
D
i=1 define the d×D frame matrix U by stacking frame vectors ui as columns. It can be easily

seen that being a tight frame is equivalent to frame matrix to be orthogonal, i.e. UU> = Id, where Id is the d× d
identity matrix. Using the frame matrix U , frame representation (7) takes the form x = Ua.

Definition 3 (Kashin’s representation) Let (ui)
D
i=1 be a tight frame in Rd. Define Kashin’s representation of

x ∈ Rd with level K the following expansion

x =

D∑
i=1

aiui, max
1≤i≤D

|ai| ≤
K√
D
‖x‖2. (8)

Optimality. As noted in (Lyubarskii & Vershynin, 2010), Kashin’s representation has the smallest possible
dynamic range K/

√
D, which is

√
d times smaller then dynamic range of the frame representation (7).

Existence. It turns out that not every tight frame can guarantee Kashin’s representation with constant level.
The following existence result is based on Kashin’s theorem (Kashin, 1977):

Theorem 3 There exist tight frames in Rd with arbitrarily small redundancy λ = D/d > 1, and such that every
vector x ∈ Rd admits Kashin’s representation with level K = K(λ) that depends on λ only (not on d or D).

4.2 Computing Kashin’s representation

To compute Kashin’s representation we use the algorithm developed by Lyubarskii & Vershynin (2010), which
transforms the frame representation (7) into Kashin’s representation (8). The algorithm requires tight frame with
frame matrix satisfying the restricted isometry property:

7



Definition 4 (Restricted Isometry Property (RIP)) A given d×D matrix U satisfies the Restricted Isometry
Property with parameters δ, η ∈ (0, 1) if for any x ∈ Rd

|supp(x)| ≤ δD ⇒ ‖Ux‖2 ≤ η‖x‖2. (9)

In general, for an orthogonal d ×D matrix U we can only guarantee the inequality ‖Ux‖2 ≤ ‖x‖2 if x ∈ Rd.
The RIP requires U to be a contraction mapping for sparse x. With a frame matrix satisfying RIP, the analysis of
Algorithm 1 from (Lyubarskii & Vershynin, 2010) yields a formula for the level of Kashin’s representation:

Theorem 4 Let (ui)
D
i=1 be a tight frame in Rd which satisfies RIP with parameters δ, η. Then any vector x ∈ Rd

admits a Kashin’s representation with level

K =
1√

δ(1− η)
. (10)

4.3 Quantizing Kashin’s representation

We utilize Kashin’s representation to design a compression method, which will enjoy dimension-free variance bound
on the approximation error. Let x ∈ Rd be the vector that we want to communicate and λ > 1 be the redundancy
factor so that D = λd is positive integer. First we find Kashin’s representation of x, i.e. x = Ua for some a ∈ RD,
and then quantize coefficients ai using any unbiased compression operator C : RD → RD that preserves the sign and
maximum magnitude:

0 ≤ C(a) sign(a) ≤ ‖a‖∞, a ∈ RD. (11)

For example, ternary quantization or any dithering (standard random, natural) can be applied. The vector that
we communicate is the quantized coefficients C(a) ∈ RD and KC is defined via

Cκ(x) = UC(a).

Due to unbiasedness of C and linearity of expectation, we preserve unbiasedness for Cκ:

E[Cκ(x)] = E [UC(a)] = UE [C(a)] = Ua = x.

Then we bound the error of approximation uniformly (without the expectation) as follows

‖Cκ(x)− x‖22 = ‖UC(a)− Ua‖22 ≤ ‖C(a)− a‖22

≤ D max
1≤i≤D

(C(a)i − ai)2 ≤ D‖a‖2∞ ≤ D
(
K(λ)√
D
‖x‖2

)2

= K2(λ)‖x‖22.

The obtained uniform upper bound K(λ)2 does not depend on the dimension d. It depends only on the
redundancy factor λ > 1 which should be chosen depending on how less we want to communicate. Thus, KC Cκ
with any unbiased quantization (11) belongs to U

(
K2(λ)

)
. Note, that we are not restrained to use only unbiased

compressions with Kashin’s representation. For instance, instead of random sparsification (which is unbiased and
satisfies (11)) one can use Top-k sparsification, which satisfies (11) and in practice works much better despite having
similar theoretical properties.

5 Measure concentration and orthogonal matrices

The concentration of the measure is a remarkable high-dimensional phenomenon which roughly claims that a
function defined on a high-dimensional space and having small oscillations takes values highly concentrated around
the average (Ledoux, 2001; Giannopoulos & Milman, 2000). Here we present one example of such concentration for
Lipschitz functions on the unit sphere, which will be the key to justify the restricted isometry property.
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5.1 Concentration on the sphere for Lipschitz functions

Let Sd−1 := {x ∈ Rd : ‖x‖2 = 1} be the unit sphere. We say that f : Sd−1 → R is a Lipschitz function with constant
L if

|f(x)− f(y)| ≤ L‖x− y‖2
for any x, y ∈ Sd−1.

Theorem 5 Let X ∈ Sd−1 be a random vector uniformly distributed on the unit Euclidean sphere. If f : Sd−1 → R
is L−Lipschitz function, then for any t ≥ 0

Prob (|f(X)− Ef(X)| ≥ t) ≤ 5 exp

(
− (d− 2)t2

8L2

)
.

Informally and rather surprisingly, Lipschitz functions on a high-dimensional unit sphere are almost constants.
Particularly, it implies that deviations of function values from the average are at most 8L/

√
d with confidence level

more than 0.99. We will apply this concentration inequality for the function x→ ‖Ux‖2 which is 1−Lipschitz if U
is orthogonal.

5.2 Random orthogonal matrices

Up to this point we did not discuss how to choose the frame vectors ui or the frame matrix U , which is used in
the construction of Kashin’s representation. We only know that it should be orthogonal and satisfy RIP for some
parameters δ, η. We now describe how to construct frame matrix U and how to estimate parameters δ, η. Unluckily,
there is no an explicit construction scheme for such matrices. There are random generation processes that provide
probabilistic guarantees (Candès & Tao, 2005, 2006; Lyubarskii & Vershynin, 2010).

Consider random d×D matrices with orthonormal rows. Such matrices are obtained from selecting the first
d rows of orthogonal D ×D matrices. Let O(D) be the space of all orthogonal D ×D matrices with the unique
translation invariance and normalized measure, which is called Haar measure for that space. Then the space of
d×D orthogonal matrices is

O(d×D) = {U = PdV : V ∈ O(D)},

where Pd : RD → Rd is the orthogonal projection on the first d coordinates. The probability measure on O(d×D) is
induces by the Haar measure on O(D). Next we show that, with respect to the normalized Haar measure, randomly
generated orthogonal matrices satisfy RIP with high probability.

Theorem 6 Let λ > 1 and D = λd, then with probability at least

1− 5 exp

[
−d
(√

λ− 1
)2
(

1

26
+

1

208
log

(
1− 1√

λ

))]
,

a random orthogonal d×D matrix U satisfies RIP with parameters

η =
3

4
+

1

4
· 1√

λ
, δ =

1

54

(
1− 1√

λ

)2

. (12)

Note that the expression for the probability can be negative if λ is too close to 1. Specifically, the logarithmic
term vanishes for λ ≈ 1.0005 giving negative probability. However, the probability approaches to 1 quite rapidly for
bigger λ’s. To get a sense of how high that probability can be, note that for d = 1000 variables and λ = 2 inflation
it is bigger than 0.98.

Now that we have explicit formulas for the parameters δ and η, we can combine it with the results of Section 4
and summarize with the following theorem.

Theorem 7 Let λ > 1 be the redundancy factor and C be any unbiased compression operator satisfying (11). Then
Kashin Compression Cκ ∈ U(ωλ) is an unbiased compression with dimension independent variance

ωλ =

(
10
√
λ√

λ− 1

)4

. (13)
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Figure 2: Comparison of empirical variances (14) of natural dithering and KC with natual dithering.

6 Experiments

In this section we describe the implementation details of KC and present our experiments of KC compared to other
popular compression methods in the literature.

6.1 Implementation details of KC

To generate a random (fat) orthogonal frame matrix U , we first generate a random matrix with entries drown
independently from Gaussian distribution. Then we extract an orthogonal matrix by applying QR decomposition.
Note that, for big dimensions the generation process of frame matrix U becomes computationally expensive. However,
after fixing the dimension of to-be-compressed vectors then the frame matrix needs to be generated only once and
can be used throughout the learning process.

Afterwards, we turn to the estimation of the parameters δ and η of RIP, which are necessary to compute Kashin’s
representations. These parameters are estimated iteratively so to minimize the representation level K (10) subject
to the constraint (9) of RIP. For fixed δ we first find the least η such 9 holds for unit vectors, which were obtained
by normalizing Gaussian random vectors (we chose sample size of 104− 105, which provided a good estimate). Then
we tune the parameter δ (initially chosen 0.9) to minimize the level K (10).

6.2 Empirical variance comparison

We empirically compare the variance produced by natural dithering against KC with natural dithering and observe
that latter introduces much less variance. We generated n vectors with d independent entries from standard
Gaussian distribution. Then we fix the minimum number of levels s that allows obtaining an acceptable variance
for performing KC with natural dithering. Next, we adjust levels s for natural dithering to the almost same number
of bits used for transmission of the compressed vector. For each of these vectors we compute normalized empirical
variance via

ω(x) :=
‖C(x)− x‖2

‖x‖2
. (14)

In Figure 2 we provide boxplots for empirical variances, which show that the increase of parameter λ leads to
smaller variance for KC. They also confirm that for natural dithering, the variance ω scales with the dimension d

10



while for KC that scaling is significantly reduced (see also Table 1 for variance bounds). This shows the positive
effect of KC combined with other compression methods. For additional insights, we present also swarmplots provided
by Seaborn Library. Figure 3 illustrates the strong robustness property of KC with respect to outliers.
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Figure 3: Swarmplots (with sub-sample size n = 1000) of empirical variances (14) for natural dithering and KC
with natural dithering.

6.3 Minimizing quadratics with CGD

To illustrate the advantages of KC in optimization algorithms, we minimized randomly generated quadratic functions
(15) for d = 104 using gradient descent with compressed gradients.

min
x∈Rd

f(x) =
1

2
x>Ax− b>x, (15)

In Figure 4a we evaluate functional suboptimality

f(xk)− f∗

f(x0)− f∗

in log-scale for vertical axis. These plots illustrate the superiority of KC with ternary quantization, where it does not
degrade the convergence at all and saves in communication compared to other compression methods and without
any compression scheme.

To provide more insights into this setting, Figure 4b visualizes empirical variances of the compressed gradients
throughout the optimization process, revealing both the low variance feature and the stabilization property of KC.

6.4 Minimizing quadratics with distributed CGD

Consider the minimization problem of the average of n quadratics

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), where fi(x) =
1

2
x>Aix, (16)
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(a) Convergence speeds with respect to the number of gradient steps and amount of communicated
bits.
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(b) Empirical variances of compressed gradients throughout the optimization process.

Figure 4: Performance of different compression methods during the minimization of quadratics (15). Hyperparameters
of compression operators (λ for KC and s for natural dithering) were chosen in such a way so to have either identical
function suboptimalities (4a) or an identical number of compressed bits (4b).

with synthetically generated matrices Ai. We solve this problem with Distributed Compressed Gradient Descent
(Algorithm 2) using a selection of compression operators.

Figures 5 and 6 show that KC combined with ternary quantization leads to faster convergence and uses less
bits to communicate than ternary quantization alone. Note that in higher dimension the gap between KC with
ternary quantization and no compression gets smaller in the iteration plot, while in the communication plot it gets
bigger. So, in high dimensions KC convergences slightly worse than no compression scheme, but the savings in
communication are huge.

7 Conclusion and future plans

We formalized, for the first time, the limitation of (randomized) compression operators in communication and
mathematically proved an uncertainty principle for communication compression. We also presented a highly robust
new—Kashin compressor (KC)—and showed that in combinations with some other compression methods gives
almost optimal compression, thus closing the gap established by our uncertainty principle. As a future work, we
plan to implement a sparse and efficient generation of large-size random orthogonal matrices using block structured
small-size orthogonal matrices. This should reduce both the storage requirement and the computational effort to
use KC in practical applications.
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Algorithm 2 Distributed Compressed Gradient Descent (DCGD)

Input: learning rate γ > 0, starting point x0 ∈ Rd, compression operator C ∈ B(α).
for k = 0, 1, 2, . . . do

for all nodes i ∈ {1, 2, . . . , n} in parallel do
Compute local gradient ∇fi

(
xk
)

Compress local gradient gki = C
(
∇fi

(
xk
))

Receive the aggregate gk = 1
n

n∑
i=1

gki

xk+1 = xk − γgk
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Figure 5: Performance of Distributed Compressed Gradient Descent (Algorithm 2 with different compression
operators for problem (16) with n = 10 workers and d = 103.
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Figure 6: Performance of Distributed Compressed Gradient Descent (Algorithm 2) with different compression
operators for problem (16) with n = 10 workers and d = 104.
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Appendix

A Proofs for Section 2

A.1 Proof of Theorem 1: UP for biased compressions B(α)

Fix R > 0 and let Bd(R) be the d-dimensional Euclidean closed ball with center at the origin and with radius
R. Denote by m = 2b the number of possible outcomes of compression operator C and by {v1, . . . , vm} ⊂ Rd the
set of compressed vectors. We relax the α-contractive requirement and prove (3) in the case when the restricted
compression operator C : Bd(R)→ {v1, . . . , vm} satisfies

E
[
‖C(x)− x‖2

]
≤ αR2, x ∈ Bd(R). (17)

Define probability functions pk as follows

pk(x) = Prob (C(x) = vk) , x ∈ Bd(R), k ∈ [m].

Then we stack functions pk together and get a vector valued function p : Bd(R)→ ∆m, where ∆m is the standard
m-simplex

∆m =

{
(p1, p2, . . . , pm) ∈ Rm :

m∑
k=1

pk = 1, pk ≥ 0 for all k ∈ [m]

}
.

We can express the expectation in (17) as

E
[
‖C(x)− x‖2

]
=

m∑
k=1

pk(x)‖vk − x‖2 (18)

and taking into account the inequality (17) itself, we conclude

max
x∈Bd(R)

m∑
k=1

pk(x)‖vk − x‖2 ≤ αR2.

The above inequality holds for the particular probability function p defined from the compression C. Therefore
the inequality will remain valid if we take the minimum of left hand side over all possible probability functions
p̂ : Bd(R)→ ∆m:

min
p̂ : Bd(R)→∆m

max
x∈Bd(R)

m∑
k=1

p̂k(x)‖vk − x‖2 ≤ αR2. (19)

We then swap the order of min-max by adjusting domains properly:

min
p̂ : Bd(R)→∆m

max
x∈Bd(R)

m∑
k=1

p̂k(x)‖vk − x‖2 = max
x∈Bd(R)

min
p̂∈∆m

m∑
k=1

p̂k‖vk − x‖2,

where the second minimum is over all probability vectors p̂ ∈ ∆m (not over vector valued functions as in the first
minimum). Next, notice that

min
p̂∈∆m

m∑
k=1

p̂k‖vk − x‖2 = ‖vx − x‖2,
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where vx ∈ arg minv∈{v1,...,vm} ‖v − x‖2 is the closest vk to x. Therefore, we have transformed (19) into

max
x∈Bd(R)

‖vx − x‖ ≤ R
√
α =: R̂.

The last inequality means that the set {v1, . . . , vm} is an R̂-net for the ball Bd(R). Using the following result
on covering numbers and volume (see Proposition 4.2.12, (Vershynin, 2018)) we conclude

m = #{v1, . . . , vm} ≥
vol(Bd(R))

vol(Bd(R̂))
=
Rd

R̂d
= α−

d/2,

which completes the proof since
α · 4b/d = α ·m2/d ≥ 1.

A.2 Proof of Lemma 1

Let C ∈ U(ω). Using relations E [C(x)] = x and E
[
‖C(x)‖2

]
≤ (ω + 1)‖x‖2, we get

E

[∥∥∥∥ 1

ω + 1
C(x)− x

∥∥∥∥2
]

=
1

(ω + 1)2
E
[
‖C(x)‖2

]
− 2

ω + 1
E [〈C(x), x〉] + ‖x‖2

=
1

(ω + 1)2
E
[
‖C(x)‖2

]
+

(
− 2

ω + 1
+ 1

)
‖x‖2

≤
(

1

ω + 1
− 2

ω + 1
+ 1

)
‖x‖2 =

ω

ω + 1
‖x‖2,

which concludes the lemma.

B Proofs for Section 5

B.1 Proof of Theorem 5: Concentration on the sphere for Lipschitz functions

Let Sd−1 be the unit sphere with the normalized Lebesgue measure µ and the geodesic metric dist(x, y) = arccos〈x, y〉
representing the angle between x and y. Using this metric, we define the spherical caps as the balls in Sd−1:

Ba(r) = {x ∈ Sn−1 : dist(x, a) ≤ r}, a ∈ Sd−1, r > 0.

For a set A ⊂ Sd−1 and non-negative number t ≥ 0 denote by A(t) the t-neighborhood of A with respect to
geodesic metric:

A(t) =
{
x ∈ Sd−1 : dist(x,A) ≤ t

}
.

The famous result of P. Levy on isoperimetric inequality for the sphere states that among all subsets A ⊂ Sd−1

of a given measure, the spherical cap has the smallest measure for the neighborhood (see e.g. (Ledoux, 2001)).

Theorem 8 (Levy’s isoperimetric inequality) Let A ⊂ Sd−1 be a closed set and let t ≥ 0. If B = Ba(r) is a
spherical cap with µ(A) = µ(B), then

µ (A(t)) ≥ µ (B(t)) ≡ µ(Ba(r + t)).

We also need the following upper bound on the measure of spherical caps2.

Lemma 2 Let t ≥ 0. If B ⊂ Sd−1 is a spherical cap with radius π/2− t, then

µ(B) ≤
√
π

8
exp

(
− (d− 2)t2

2

)
. (20)

2https://en.wikipedia.org/wiki/Spherical_measure
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These two results yield a concentration inequality on the unit sphere around median of the Lipschitz function.

Theorem 9 Let f : Sd−1 → R be a L-Lipschitz function (w.r.t. geodesic metric3) and let M = Mf be its median,
i.e.

µ {x : f(x) ≥M} ≥ 1

2
and µ {x : f(x) ≤M} ≥ 1

2
.

Then, for any t ≥ 0

µ {x : |f(x)−M | ≥ t} ≤
√
π

2
exp

(
− (d− 2)t2

2L2

)
. (21)

B.1.1 Proof of Theorem 9: Concentration around the median

Without loss of generality we can assume that L = 1. Denote

A+ = {x : f(x) ≥M} and A− = {x : f(x) ≤M},

so that µ(A±) ≥ 1/2 = µ(Ba(π/2)) for some a ∈ Sd−1. Then the isoperimetric inequality (21) and the upper bound
(20) imply

µ(Ac±(t)) = µ{x : dist(x,A±) > t} ≤ µ{x : dist(x,Ba(π/2)) > t}
= µ(Ba(π/2− t))

≤
√
π

8
exp

(
− (d− 2)t2

2

)
.

Note that x ∈ A−(t) implies that dist(x, y) ≤ t, f(y) ≤M for some y ∈ A−. Using the Lipschitzness of f we get
f(x) ≤ f(y) + dist(x, y) ≤M + t. Analogously, x ∈ A+(t) implies that dist(x, y) ≤ t, f(y) ≥M for some y ∈ A+.
Again, the Lipschitzness of f gives −f(x) ≤ −f(y) + dist(x, y) ≤ −M + t. Thus

|f(x)−M | ≤ t for any x ∈ A+(t) ∩A−(t).

To complete the proof, it remains to combine this with inequalities for measures of complements

µ ({x : |f(x)−M | > t}) = 1− µ ({x : |f(x)−M | ≤ t})
≤ 1− µ(A+(t) ∩A−(t))

≤ µ(Ac+(t)) + µ(Ac−(t)) ≤
√
π

2
exp

(
− (d− 2)t2

2

)
.

Continuity of µ and f give the result with the relaxed inequality.

B.1.2 Proof of Theorem 5: Concentration around the mean

Now, from (21) we derive a concentration inequality around the mean rather than median, where mean is defined via

Ef =

∫
Sd−1

f(x) dµ(x).

Again, without loss of generality we assume that L = 1 and d ≥ 3. Fix ε ∈ [0, 1] and decompose the set
{x : |f(x)− Ef | ≥ t} into two parts:

µ ({x : |f(x)− Ef | ≥ t}) ≤ µ ({x : |f(x)−M | ≥ εt}) + µ ({x : |Ef −M | ≥ (1− ε)t}) =: A1 +A2,

where M is a median of f . From the concentration (21) around the median, we get an estimate for A1

A1 ≤
√
π

2
exp

(
− (d− 2)t2ε2

2

)
.

3notice that Lipschitzness w.r.t. geodesic metric is weaker than w.r.t. Euclidean metric. This implies that the obtained concentration
holds for L-Lipschitz function w.r.t. standard Euclidean distance.
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Now we want to estimate the second term A2 with a similar upper bound so to combine them. Obviously, the
condition in A2 does not depend on x, and it is a piecewise constant function of t. Therefore

A2 ≤ µ ({x : E|f −M | ≥ (1− ε)t}) = µ ({x : ‖f −M‖1 ≥ (1− ε)t})

=

{
1 if t ≤ 1/(1−ε)‖f −M‖1
0 otherwise

≤

{
1 if t ≤ π

2(1−ε)
√
d−2

0 otherwise

where we bounded ‖f −M‖1 as follows

‖f −M‖1 =

∫ ∞
0

µ ({x : |f(x)−M | ≥ u}) du

≤
√
π

2

∫ ∞
0

exp

(
− (d− 2)u2

2

)
du

=

√
π

d− 2

∫ ∞
0

exp(−u2) du

=

√
π

d− 2

√
π

2
=

π

2
√
d− 2

.

We further upper bound A2 to get the same exponential term as for A1:

A2 ≤

{
1 if t ≤ π

2(1−ε)
√
d−2

0 otherwise
≤ exp

[
π2

8

ε2

(1− ε)2

]
exp

(
− (d− 2)t2ε2

2

)
. (22)

To check the validity of the latter upper bound, first notice that for t = π
2(1−ε)

√
d−2

both are equal to 1. Then,

the monotonicity and positiveness of the exponential function imply (22) for 0 ≤ t < π
2(1−ε)

√
d−2

and t > π
2(1−ε)

√
d−2

.

Combining these two upper bounds for A1 and A2, we get

A1 +A2 ≤
(

exp

[
π2

8

ε2

(1− ε)2

]
+

√
π

2

)
exp

(
− (d− 2)t2ε2

2

)
≤ 5 exp

(
− (d− 2)t2

8

)
if we set ε = 1/2. To conclude the theorem, note that normalized uniform measure µ on the unit sphere can be seen
as a probability measure on Sd−1.

B.2 Proof of Theorem 6: Random orthogonal matrices with RIP

The proof follows the steps of the proof of Theorem 4.1 of Lyubarskii & Vershynin (2010). First, we relax the
inequality in Theorem 5 to

Prob (|f(X)− Ef(X)| ≥ t) ≤ 5 exp

(
− d t

2

9L2

)
, t ≥ 0, d ≥ 20. (23)

Let x ∈ SD−1 be fixed. Any orthogonal d × D matrix U ∈ O(d × D) can be represented as the projection
U = PdV of D ×D orthogonal matrix V ∈ O(D). The uniform probability measure (or Haar measure) on O(D)
ensures that if V ∈ O(D) is random then the vector z = V x is uniformly distributed on SD−1. Therefore, if
U ∈ O(d×D) is random with respect to the induced Haar measure on O(d×D), then random vectors Ux and Pdz
have identical distributions. Denote f(z) = ‖Pdz‖2 and notice that f is 1-Lipschitz on the sphere SD−1. To apply
the concentration inequality (23), we compute the expected norm of these random vectors:

Ef(z) =

∫
SD−1

‖Pdz‖2 dµ(z) ≤
(∫

SD−1

‖Pdz‖22 dµ(z)

)1/2

=

(
d∑
i=1

∫
SD−1

z2
i dµ(z)

)1/2

=

(
d∑
i=1

1

D

)1/2

=

√
d

D
,

where we used the fact that coordinates z2
i are distributed identically and therefore they have the same 1/D mean.

Applying inequality (23) yields, for any t ≥ 0

Prob
(
U ∈ O(d×D) : ‖Ux‖2 >

√
d/D + t

)
≤ Prob

(
z ∈ SD−1 : |f(z)− Ef(z)| > t

)
≤ 5 exp

(
−Dt

2

9

)
. (24)
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Let Sδ be the set of vectors x ∈ SD−1 with at most δD non-zero elements

Sδ :=
{
x ∈ SD−1 : |supp(x)| ≤ δD

}
=

⋃
|I|≤δD

{
x ∈ SD−1 : supp(x) ⊆ I

}
=

⋃
|I|≤δD

SδI ,

where SδI denotes the subset of vectors Sδ having a given support I ⊆ [D] of indices. Fix ε > 0. For each I, we can

find an ε-net for SδI in the Euclidean norm with cardinality at most (3/ε)
δD

(see Proposition 4.2.12 and Corollary
4.2.13 in (Vershynin, 2018)). Taking the union over all sets I with |I| = dδDe, we conclude by the Stirling’s
approximation that there exists an ε-net Nε of Sδ with cardinality

|Nε| ≤
(

D

dδDe

)(
3

ε

)δD
≤
(

3e

εδ

)δD
. (25)

Applying inequality (24), we have

Prob
(
U ∈ O(d×D) : ‖Uy‖2 >

√
d/D + t, for some y ∈ Nε

)
≤ |Nε| · 5 exp

(
−Dt

2

9

)
. (26)

Since Nε is an ε-net for Sδ, then for any x ∈ Sδ there exists such y ∈ Nε that ‖x− y‖2 ≤ ε. Furthermore, from
the orthogonality of matrix U we conclude

‖Ux‖2 ≤ ‖Uy‖2 + ‖U(x− y)‖2 ≤ ‖Uy‖2 + ε.

Hence, by relaxing the condition of probability in (26) and using the upper bound (25), we get

Prob
(
U ∈ O(d×D) : ‖Ux‖2 >

√
d/D + t+ ε, for some x ∈ Sδ

)
≤
(

3e

εδ

)δD
· 5 exp

(
−Dt

2

9

)
= 5 exp

[
−D

(
t2

9
− δ log

3e

εδ

)]
.

The above inequality can be reformulated in terms of RIP condition for a random matrix U ∈ O(d×D)

Prob

(
U ∈ RIP

(
δ,

1√
λ

+ t+ ε

))
≥ 1− 5 exp

[
−D

(
t2

9
− δ log

3e

εδ

)]
. (27)

Thus, recalling the formula (10) for the level K, we aim to choose such ε, t, δ (depending on λ) that to maximize
both 1/K and the probability in (27), i.e. the following two expressions

√
δ

(
1− 1√

λ
− ε− t

)
and

t2

9
− δ log

3e

εδ
. (28)

Note that choosing parameters ε, t, δ is not trivial in this case as we want to maximize both terms and there is a
trade-off between them. We choose the parameters as follows4

ε =
1

100

(
1− 1√

λ

)
, t = 74 ε, δ = 16ε2. (29)

With these choice of parameters we establish (12).

η =
1√
λ

+ t+ ε = 1− 25 ε = 1− 1

4

(
1− 1√

λ

)
=

3

4
+

1

4
· 1√

λ
,

δ = 16ε2 =
1

54

(
1− 1√

λ

)2

.

(30)

4these expressions were constructed using two techniques: solving optimality conditions for the Lagrangian and numerical simulations.
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To complete the theorem we need to bound the second expression of (28) for the probability. Letting ν =(
1− 1√

λ

)2

∈ (0, 1) and plugging the expressions (29) in (28) we get

t2

9
− δ log

3e

εδ
=

742

9
ε2 − 16ε2 log

3e/16

ε3

=
742

9 · 104
ν − 16

104

3

2
ν log

(3e/16)2/3 · 104

ν

= Aν −Bν log
C

ν
= (A−B logC)ν +Bν log ν

= ν (A−B logC +B log ν)

=

(
1− 1√

λ

)2(
(A−B logC) + 2B log

(
1− 1√

λ

))
≥
(

1− 1√
λ

)2(
1

26
+

1

208
log

(
1− 1√

λ

))
,

where we defined absolute constants A,B,C as

A =
742

9 · 104
, B =

24

104
, C =

(
3e

16

)2/3

· 104.

and used the following estimates

A−B logC ≥ 1

26
, 2B =

3

54
≤ 1

208
.

This concludes the theorem as

Prob (U ∈ RIP (δ, η)) ≥ 1− 5 exp

[
−D

(
t2

9
− δ log

3e

εδ

)]
≥ 1− 5 exp

[
−D

(
1− 1√

λ

)2(
1

26
+

1

208
log

(
1− 1√

λ

))]

≥ 1− 5 exp

[
−d
(√

λ− 1
)2
(

1

26
+

1

208
log

(
1− 1√

λ

))]
.

B.3 Proof of Theorem 7: Kashin Compression

The unbiasedness of Cκ has been shown in part 4.3 with uniform upper bound K(λ)2 for the variance. To prove the
formula (13) we use expressions (30)

ωλ = K(λ)2 =

(
1√

δ(1− η)

)2

=

(
1

4ε · 25ε

)2

=

(
1

10ε

)4

=

(
10
√
λ√

λ− 1

)4

.
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