Rising Stars in Al Symposium 2022

Shifted Compression Framework for Distributed Learning

Egor Shulgin

Optimization and Machine Learning Lab

Joint work with Peter Richtárik

Distributed Learning

% of training time spent in communication

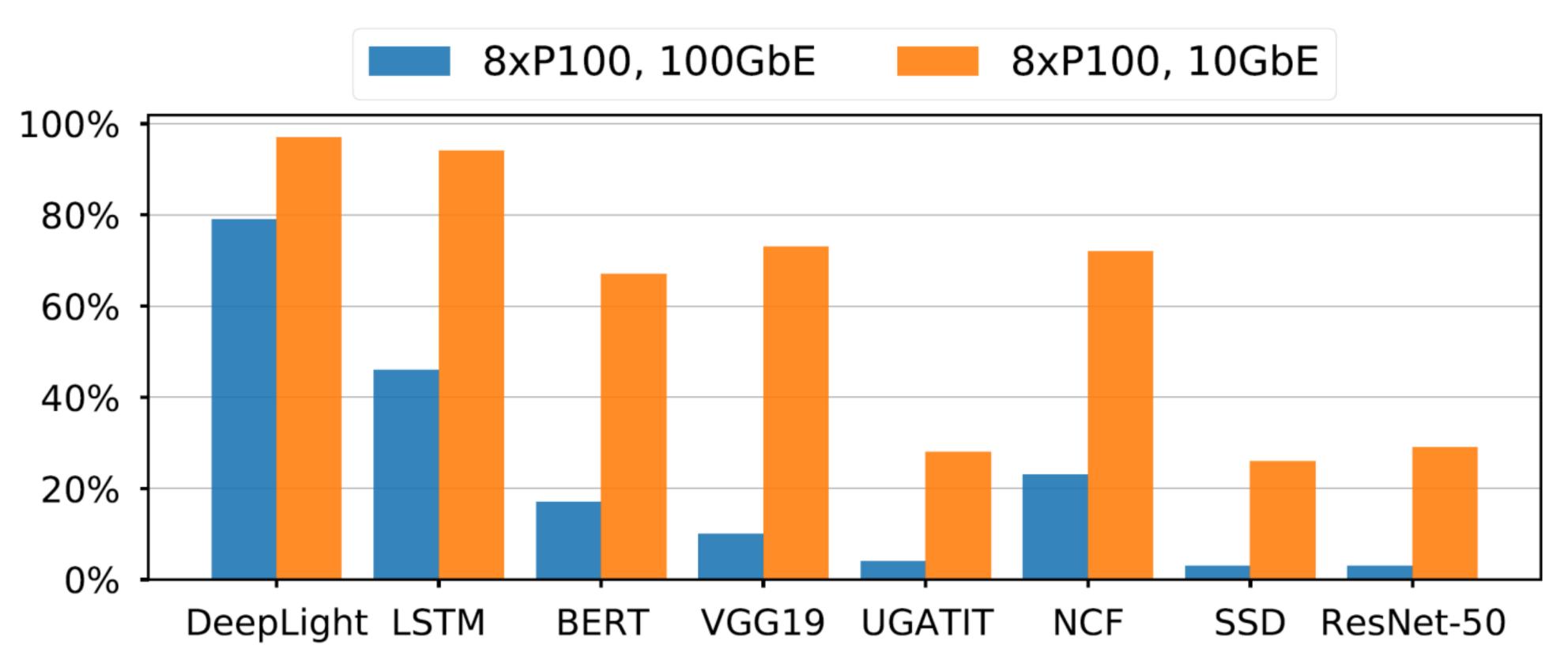
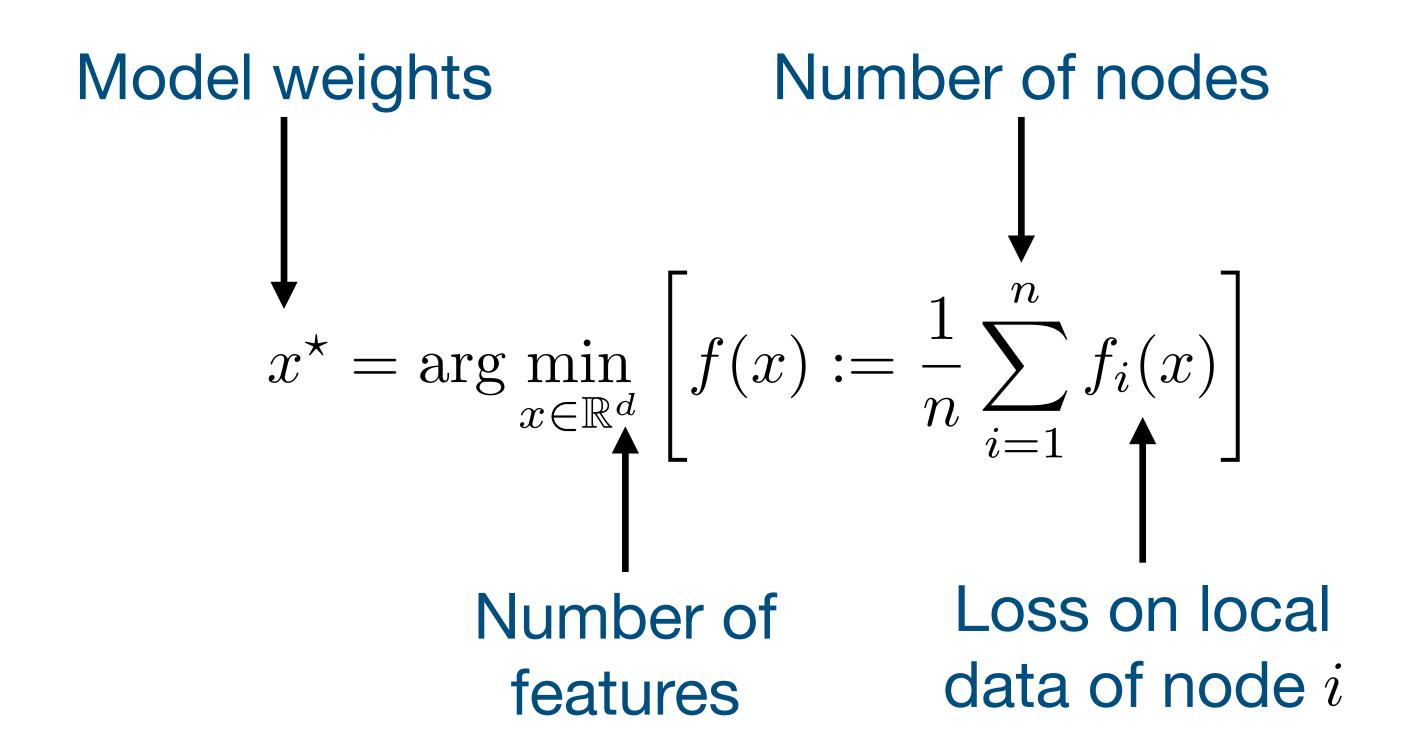


Image credit to Sapio et al., NSDI '21 presentation

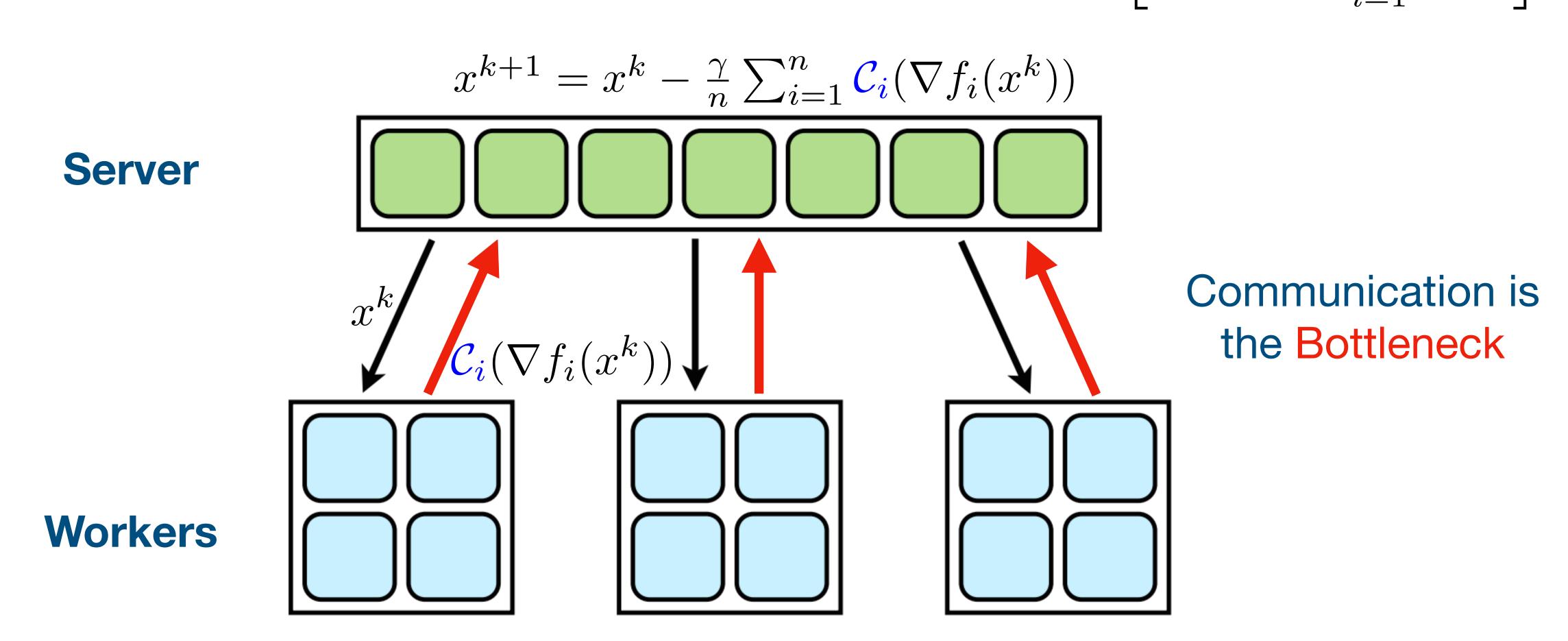
Problem Formulation



Assumptions:

- μ-strong convexity
- L-smoothness

Distributed Learning $x^* = \arg\min_{x \in \mathbb{R}^d} \left| f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right|$



Distributed Compressed Gradient Descent (DCGD) scheme

Solution: compress the transmitted updates

Compression Operators $\mathcal{C}: \mathbb{R}^d o \mathbb{R}^d$

Contractive

$$\mathbf{E} \| \mathcal{C}(x) - x \|^2 \le (1 - \delta) \|x\|^2$$

Top-K (for K=2)

Picks components with <u>largest</u> absolute value

Unbiased

$$\mathbf{E}Q(x) = x, \quad \mathbf{E}\|Q(x) - x\|^2 \le \omega \|x\|^2$$

Rand-K (for K=2)

$$\begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

Picks components uniformly at random

Convergence of DCGD

Expected distance to the solution

$$\mathbf{E} \|x^{k} - x^{\star}\|^{2} \le (1 - \gamma\mu)^{k} \|x^{0} - x^{\star}\|^{2} + \frac{2\gamma\omega}{\mu n} \cdot \left[\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_{i}(x^{\star})\|^{2}\right]$$

Linear convergence term

Problem

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x^*)\|^2$$

Neighborhood term (due to compression)

Communication complexity:

(in the interpolation regime $\nabla f_i(x^*) = 0$)

$$\tilde{\mathcal{O}}\left(\kappa\left(1+\frac{\omega}{n}\right)\right)$$

Comes from compression

Condition number: $\kappa = L/\mu$

Shifted Compression Solution

$$\mathbf{E}\mathcal{Q}_h(x) = x,$$

Shifted compressor:
$$\mathbf{E}Q_h(x) = x$$
, $\mathbf{E}\|Q_h(x) - x\|^2 \le \omega \|x - \mathbf{h}\|^2$

Any Q_h arises by a shift of unbiased operator Q: $Q_h(x) = h + Q(x - h)$

Method:
$$x^{k+1} = x^k - \gamma \frac{1}{n} \sum_{i=1}^n \left[h_i^k + \mathcal{Q}(\nabla f_i(x) - h_i^k) \right]$$

$$\mathbf{E} \|x^{k} - x^{\star}\|^{2} \le (1 - \gamma\mu)^{k} \|x^{0} - x^{\star}\|^{2} + \frac{2\gamma\omega}{\mu n} \cdot \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_{i}(x^{\star}) - h_{i}\|^{2}$$

Neighborhood term

Imaginary situation: we know optimal shifts $h_i^* = \nabla f_i(x^*)$

Practical Solution

Goal: learn the optimal shifts: $h_i^k \to \nabla f_i(x^*)$

Via loopless mechanism:

$$h_i^{k+1} = \left\{ \begin{array}{ll} \nabla f_i(x^k) & \text{with probability } p \\ h_i^k & \text{with probability } 1-p \end{array} \right.$$

Convergence result:

$$\mathbf{E}V^k \le \max\left\{ (1 - \gamma\mu)^k, \left(1 - p + \frac{2\omega}{nM}\right)^k \right\} V^0$$

Lyapunov function:

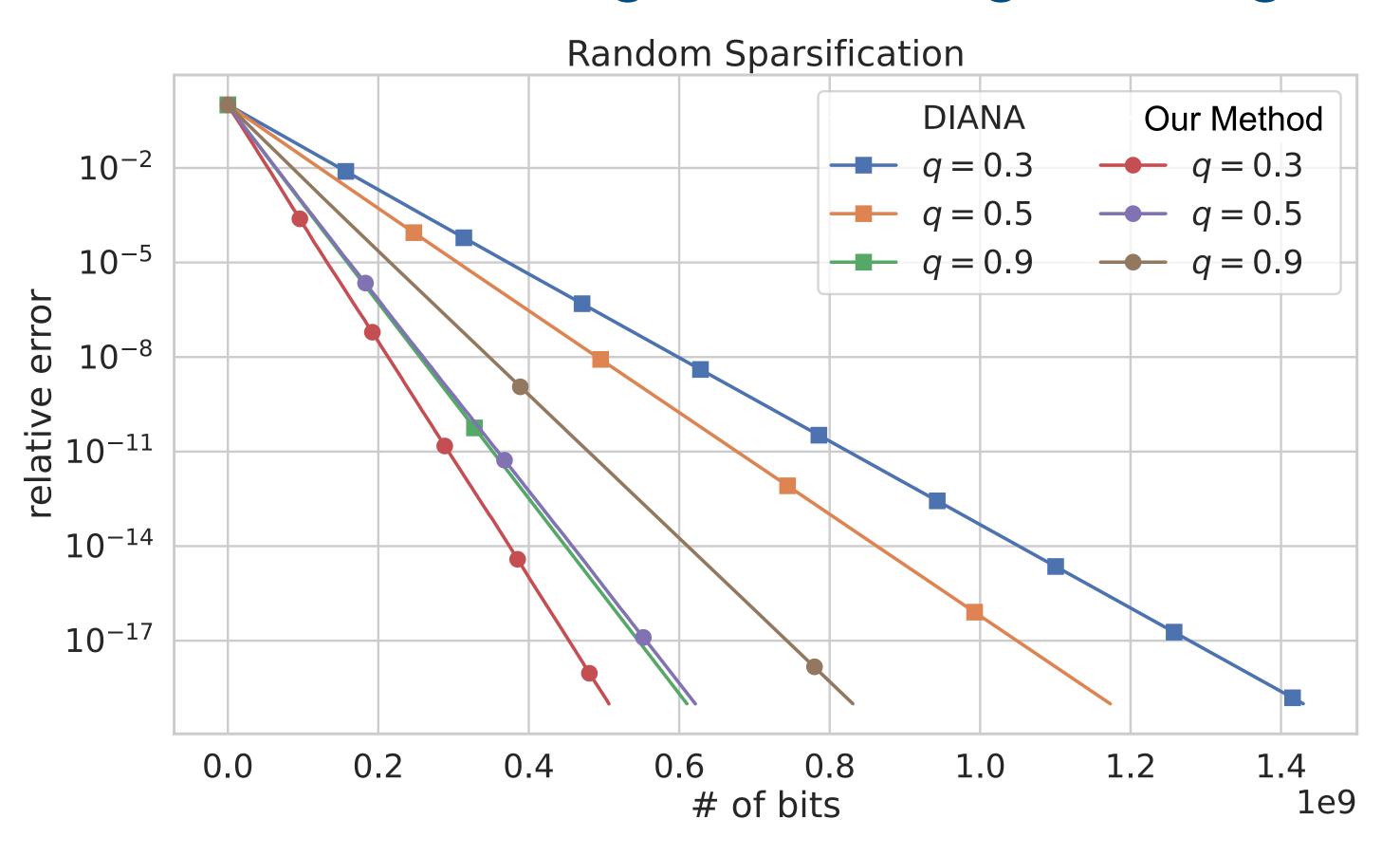
$$V^{k} = \|x^{k} - x^{*}\|^{2} + \omega M \gamma^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} \|h_{i}^{k} - \nabla f_{i}(x^{*})\|^{2}$$

Communication complexity:

$$\tilde{\mathcal{O}}\left(\max\left\{\kappa\left(1+\frac{\omega}{n}\right),\frac{1}{p}\right\}\right)$$

Empirical perfomance

Numerical results for Regularized Logistic Regression



q = k/d

Comparison of DIANA and our Algorithm

Contributions Summary

- Generalizations of existing distributed methods to allow using both biased and unbiased compressors
- **Improved rates** for methods with <u>compressed iterates</u> with and without variance-reduction

$$\kappa^2 \left(1 + \frac{\omega}{n} \right) \to \kappa \left(1 + \frac{\omega}{n} \right)$$

 New loopless algorithm with <u>simpler approach</u> to reduction of variance coming from compression

Any Questions?

More details in the paper

Contacts egor.shulgin@kaust.edu.sa

Egor Shulgin

shulgin-egor.github.io