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Image credit to Sapio et al., NSDI ’21 presentation
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https://www.usenix.org/conference/nsdi21/presentation/sapio

Problem Formulation

Model weights Number of nodes

l* | i 1 n 7
r* = arg ;161% fla) =~ ; sz(fE)
Number of Loss on local
features data of node 1

| * u-strong convexity
Assumptions:
 [.-smoothness

3
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Distributed Compressed Gradient Descent (DCGD) scheme

Solution: compress the transmitted updates
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Compression Operators C : R* — R*

Contractive Unbiased
E||C(x) — z||* < (1 —0)|||]? EQ(z) =z, E|Q(x)—z|? < wl|z|]
Top-K (for K=2) Rand-K (for K=2)

Il I

Picks components with largest absolute value Picks components uniformly at random
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Convergence of DCGD

Expected distance to the solution Problem

B[lof =" <@ =gt |+° — | -

Linear convergence term Neighborhood term

(due to compression)

Communication complexity: O (Fv‘ (1 | w))

(in the interpolation regime Vf.(x™*) = 0) |
Comes from compression

Condition number: x = L/u



Shifted Compression Solution

Shifted compressor:  EQu(x) =z, E|Qx(z)— z||* <w|z —h|~
shift vector

Any Q}, arises by a shift of unbiased operator Q: Qp, (az) = h + Q(af — h)

1 mn
Methoa: T = gh v Z [hf + Q(Vfi(z) — hf)]
1=1

2yw
LT

B o 2’ < (1" [l - o]

1 X )
- Z IV fi(z™) = hi|
1=1
Neighborhood term

Imaginary situation: we know optimal shifts 21X = Vf(x™)
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Practical Solution

Goal: learn the optimal shifts: A7 — Vf;(z*)

ph+l _ { V fi(x") with probability p

Via loopless mechanism: y with probability 1 —
20 &
Convergence result; EV* < max {(1 — )", (1 —pA nM) } 170
Lyapunov function: VE = ok — ot |P +wddy? S 0 - )|
1=1

- 1
Communication complexity: O (max {m (1 : w) , _})



Empirical perfomance

Numerical results for Regularized Logistic Regression

Random Sparsification
DIANA Our Method
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Contributions Summary

* Generalizations of existing distributed methods to allow using both biased

and unbiased compressors

 Improved rates for methods with compressed iterates with and without

variance-reduction
K2 (1 | w) %/{(1 | w)
T T

* New loopless algorithm with simpler approach to reduction of variance
coming from compression
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Any Questions?

More details Contacts
in the paper egor.shulgin@kaust.edu.sa
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