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The Problem: Distributed Optimization

Find x? = arg min
x∈Rd

f (x) := 1
n

n∑
i=1
fi(x)

 , (?)

where x represents the parameters of a machine learning model we wish
to train, n is the number of workers/clients, and each fi : Rd → R is
an Li-smooth loss and f is µ-strongly convex.

Communication as the Bottleneck

Problem: In distributed systems, communication from workers to
the server can take much more time than computation.
Possible Solution: Lossy Compression C : Rd→ Rd

Figure 1: Distributed Compressed Gradient Descent (DCGD) scheme [3]

Compression Operators

Contractive (C ∈ B(δ), δ ∈ (0, 1]):

E ‖C(x)− x‖2 ≤ (1− δ)‖x‖2, ∀x ∈ Rd

• Pro: low empirical variance
• Con: may not converge without Error-Feedback [1]

Unbiased (Q ∈ U(ω), ω ≥ 0):

EQ(x) = x, E ‖Q(x)− x‖2 ≤ ω‖x‖2, ∀x ∈ Rd

• Pro: have better guarantees (variance decreases with n)
• Con: can have higher empirical variance

Issue: DCGD with unbiased compressors Qi ∈ U(ω) and a constant
step-size converges (linearly) to a neighbourhood:

E
∥∥∥xk − x?∥∥∥2 ≤ (1− γµ)k‖x0 − x?‖2 + 2γω

µn
· 1
n

n∑
i=1
‖∇fi(x?)‖2 (1)

Fix: Shifted Compressor

Randomized mapping Qh is a shifted compression operator (Qh ∈ U(ω;h)) if

EQh(x) = x, E ‖Qh(x)− x‖2 ≤ ω‖x− h‖2 ∀x ∈ Rd. (2)

Lemma. All shifted compressors arise by a shift of unbiased operator Q ∈ U(ω)

Qh(x) = h +Q(x− h).

This gives rise to a shifted gradient estimator: gh(x) = Qh (∇f (x)) and method

xk+1 = xk − γ 1
n

n∑
i=1
ghi(x) = xk − γ 1

n

n∑
i=1

[
hki +Qi

(
∇fi(x)− hki

)]
. (DCGD-SHIFT)

The same trick can be applied using a (possibly biased) compressor C for the shift h:

h = s + C(∇f (x)− s). (3)

General Framework: Choosing the Shifts

SHIFT hk+1
i = ski + Ci

(
∇fi(xk)− ski

)
METHOD REF VR? ski Ci

DCGD [3] 7 0 O

DCGD-SHIFT [New] 7 s0
i O

DCGD-STAR [New] 3 ∇fi(x?) any Ci ∈ B(δ)

DIANA [4] 3 hki αQi, Qi ∈ U(ωi)

Rand-DIANA [New] 3 hki Bepi

GDCI [2] 7 xk/γ O

Table 1: List of existing and new algorithms which fit our framework. VR – variance reduced
method. O/I – zero/identity, Bep = {x/0 with prob. p/(1− p)} – Bernoulli compressor.

ALGORITHM PREVIOUS OUR RESULT

DCGD-SHIFT − κ
(
1 + ω

n

)
DIANA max

{
κ
(
1 + ω

n

)
, ω
}

max
{
κ
(
1 + ω

n(1− δ)
)
, ω(1− δ)

}
Rand-DIANA − max

{
κ
(
1 + ω

n (1− δ)
)
, 1
p

}
GDCI κ2

(
1 + ω

n

)
κ
(
1 + ω

n

)
VR-GDCI max

{
κ2
(
1 + ω

n

)
, ω
}

max
{
κ
(
1 + ω

n

)
, ω
}

Table 2: Summary of iteration complexity results (without log 1/ε factors) with highlighted
improvements over the previous works. Results for non VR methods are in the interpolation
regimes: ∇fi(x?) = 0 = x?−γ∇fi(x?). Last two rows: methods with compressed iterates.

New Method: Rand-DIANA

Learns the shift in a randomized (loop-less) way:
hki = ∇fi(wk

i )

wk+1
i =

x
k with probability pi
wk
i with probability 1− pi

(4)

Convergence of Rand-DIANA

Assume fi are convex and Li-smooth, f is µ-convex and step size

γ ≤
[(

1 + 2ω
n

)
Lmax +M maxi(piLi)

]−1

where M > 2ω/(npm), Lmax = maxiLi, pm := mini pi. Then the
iterates of DCGD-SHIFT with Rand-DIANA shift update (4) satisfy

E
[
V k
]
≤ max

{
(1− γµ)k,

(
1− pm + 2ω

nM

)k}
V 0,

where the Lyapunov function V k is defined by

V k :=
∥∥∥xk − x?∥∥∥2 +Mγ2 · 1

n

∑n
i=1

∥∥∥hki −∇fi(x?)∥∥∥2
.

Experiments

`2-regularized logistic regression problem with w2a LibSVM dataset.
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Figure 2: Comparison of DIANA and Rand-DIANA with varying param-
eter of Rand-K sparsification compressor.

Shifted compressor can also be used for model compression:

xk+1 = xk − (ηγ)
[
xk −Q

(
xk − γ∇f (xk)

)]
/γ (GDCI)
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