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Abstract

We propose a general yet simple theorem describ-
ing the convergence of SGD under the arbitrary
sampling paradigm. Our theorem describes the
convergence of an infinite array of variants of
SGD, each of which is associated with a specific
probability law governing the data selection rule
used to form minibatches. This is the first time
such an analysis is performed, and most of our
variants of SGD were never explicitly considered
in the literature before. Our analysis relies on the
recently introduced notion of expected smooth-
ness and does not rely on a uniform bound on the
variance of the stochastic gradients. By specializ-
ing our theorem to different mini-batching strate-
gies, such as sampling with replacement and inde-
pendent sampling, we derive exact expressions for
the stepsize as a function of the mini-batch size.
With this we can also determine the mini-batch
size that optimizes the total complexity, and show
explicitly that as the variance of the stochastic
gradient evaluated at the minimum grows, so does
the optimal mini-batch size. For zero variance,
the optimal mini-batch size is one. Moreover, we
prove insightful stepsize-switching rules which
describe when one should switch from a constant
to a decreasing stepsize regime.

1. Introduction

We consider the optimization problem

z* = arg min
zER?
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where each f; : R? — R is smooth (but not necessarily
convex). Further, we assume that f has a unique' global
minimizer z* and is p—strongly quasi-convex (Karimi et al.,
2016; Necoara et al., 2018):

f@@*) = f(z) +(Vf(z),2" —x) + g |z — 2| (@)
for all z € RY.

1.1. Background and contributions

Stochastic gradient descent (SGD) (Robbins & Monro,
1951; Nemirovski & Yudin, 1978; 1983; Shalev-Shwartz
et al., 2007; Nemirovski et al., 2009; Hardt et al., 2016),
has become the workhorse for training supervised machine
learning problems which have the generic form (1).

Linear convergence of SGD. Moulines & Bach (2011) pro-
vided a non-asymptotic analyses of SGD showing linear con-
vergence for strongly convex f up to a certain noise level.
Needell et al. (2016) improved upon these results by remov-
ing the quadratic dependency on the condition number in
the iteration complexity results, and considered importance
sampling. The analysis of Needell et al. (2016) was later
extended to a mini-batch variant where the mini-batches are
formed by partitioning the data (Needell & Ward, 2017).
These works are the main starting point for ours.

Contributions: We further tighten and generalize these re-
sults to virtually all forms of sampling. We introduce an
expected smoothness assumption (Assumption 2.1), first in-
troduced in (Gower et al., 2018) in the context of a certain
class of variance-reduced methods. This assumption is a
joint property of f and the sampling scheme D utilized by
an SGD method, and allows us prove a generic complex-
ity result (Theorem 3.1) that holds for arbitrary sampling
schemes D. Our work is the first time SGD is analysed
under this assumption. We obtain linear convergence rates
without strong convexity; in particular, assuming strong
quasi-convexity (this class includes some non-convex func-
tions as well). Furthermore, we do not require the functions
fi to be convex.

Gradient noise assumptions. Shamir & Zhang (2013) ex-
tended the analysis of SGD to convex non-smooth optimiza-

!This assumption can be relaxed; but for simplicity of exposi-
tion we enforce it.
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tion (including the strongly convex case). However, their
proofs still rely on the assumption that the variance of the
stochastic gradient is bounded for all iterates of the algo-
rithm: there exists ¢ € R such that E;||V f;(z*)||?> < ¢ for
all k. The same assumption was used in the analysis of sev-
eral recent papers (Recht et al., 2011; Hazan & Kale, 2014;
Rakhlin et al., 2012). A much more relaxed weak growth
assumption E; ||V f;(2%)||? < ¢1 +c2E||V f(2*)||? for all &,
was apparently first used in the later 90’s to prove the asymp-
totic convergence of SGD (see Proposition 4.2 of Bertsekas
& Tsitsiklis (1996)). Bottou et al. (2018) establish a linear
convergence of SGD under this weak growth assumption.
Recently, Nguyen et al. (2018) turn this assumption into
a theorem by establishing formulas c¢; and ¢, under some
reasonable conditions, and provide further insights into the
workings of SGD and its parallel asynchronous cousin, Hog-
wild!. Similar conditions have been also proved and used
in the analysis of decentralized variants of SGD (Lian et al.,
2017; Assran et al., 2018). Based on a strong growth con-
dition (¢; = 0), Schmidt & Roux (2013) were the first to
establish linear convergence of SGD, with Cevher & Vu
(2017) later giving sufficient and necessary conditions for
the linear convergence of SGD under this condition.

Contributions: Our analysis does not directly assume a
growth condition. Instead, we make use of the remarkably
weak expected smoothness assumption.

Optimal mini-batch size. Recently it was experimentally
shown by Goyal et al. (2017) that using larger mini-batches
sizes is key to efficient training of large scale non-convex
problems, leading to the training of ImageNet in under 1
hour. The authors conjectured that the stepsize should grow
linearly with the mini-batch size.

Contributions: We prove (see Section 4) that this is the
case, upto a certain optimal mini-batch size, and provide
exact formulas for the dependency of the stepsizes on the
mini-batch sizes.

Learning schedules. Chee & Toulis (2018) develop tech-
niques for detecting the convergence of SGD within a region
around the solution.

Contributions: We provide a closed-form formula for when
should SGD switch from a constant stepsize to a decreas-
ing stepsize (see Theorem 3.2). Further, we clearly show
how the optimal stepsize (learning rate) increases and the
iteration complexity decreases as the mini-batch size in-
creases for both independent sampling and sampling with
replacement. We also recover the well known L/ log(1/€)
convergence rate of gradient descent (GD) when the mini-
batch size is n; this is the first time a generic SGD analysis
recovers the correct rate of GD.

Over-parameterized models. There has been some recent
work in analysing SGD in the setting where the underlying

model being trained has more parameters than there is data
available. In this zero—noise setting, Ma et al. (2018) showed
that SGD converges linearly.

Contributions: In the case of over-parametrized models,
we extend the findings of Ma et al. (2018)? to independent
sampling and sampling with replacement by showing that
the optimal mini-batch size is 1. Moreover, we provide
results in the more general setting where the model is not
necessarily over-parametrized.

Practical performance. We corroborate our theoretical
results with extensive experimental testing.

1.2. Stochastic reformulation

In this work we provide a single theorem through which we
can analyse all importance sampling and mini-batch variants
of SGD. To do this, we need to introduce a sampling vector
which we will use to re-write our problem (1).

Definition 1.1. We say that a random vector v € R"
drawn from some distribution D is a sampling vector if
its mean is the vector of all ones:

Ep[v] =1, Vi€ |[n]. 3)
With each distribution D we now introduce a stochastic
reformulation of (1) as follows

min Ep | () = - wifi@)|. @
=1

zERC

By the definition of the sampling vector, f,(x) and V f, ()
are unbiased estimators of f(z) and V f(x), respectively,
and hence probem (4) is indeed equivalent (i.e., a reformula-
tion) of the original problem (1). In the case of the gradient,
for instance, we get

Ep [V f.(x)] €

S|

iED [v;]V fi(x) & Vi(x). (5

Similar but different stochastic reformulations were recently
proposed by Richtéarik & Takac¢ (2017) and further used in
(Loizou & Richtérik, 2017; 2019) for the more special prob-
lem of solving linear systems, and by Gower et al. (2018) in
the context of variance-reduced methods. Reformulation (4)
can be solved using SGD in a natural way:

oF T = 2P — ARV f () (6)

where v* ~ D is sampled i.i.d. at each iteration and v* > 0
is a stepsize. However, for different distributions D, (6) has

2Recently, the results of Ma et al. (2018) were extended to the
accelerated case by Vaswani et al. (2018); however, we do not
study accelerated methods in this work.
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a different interpretation as an SGD method for solving the
original problem (1). In our main result we will analyse (6)
for any D satisfying (3). By substituting specific choices of
D, we obtain specific variants of SGD for solving (1).

2. Expected Smoothness and Gradient Noise

In our analysis of SGD (6) applied to the stochastic refor-
mulation (4) we rely on a generic and remarkably weak
assumption of expected smoothness, which we now define
and relate to existing growth conditions.

2.1. Expected smoothness

Expected smoothness (Gower et al., 2018) is an assumption
that combines both the properties of the distribution D and
the smoothness properties of function f.

Assumption 2.1 (Expected Smoothness). We say that f
is L—smooth in expectation with respect to distribution D
if there exists £ = L(f,D) > 0 such that

Ep [IV/u() - Viule")] < 2£(f(@) - f(@*)),
)
for all z € R?. For simplicity, we will write (f, D) ~
ES(L) to say that (7) holds. When D is clear from the
context, we will often ignore mentioning it, and simply
state that the expected smoothness constant is L.

There are scenarios where the above inequality is tight. In-
deed, in the setting of stochastic reformulations of linear
systems considered in (Richtarik & Takac, 2017), one has
fol@) = HIV (@)% Visa®) = 0and f,(*) = 0,
which means that (7) holds as an identity with £ = 1.

In Section 3.3 we show how convexity and L;—smoothness
of f; implies expected smoothness. However, the opposite
implication does not hold. Indeed, the expected smooth-
ness assumption can hold even when the f;’s and f are not
convex, as we show in the next example.

Example 2.2 (Non-convexity and expected smoothness).
Let f; = ¢ fori = 1,...,n, where ¢ is a Ly—smooth
and non-convex function which has a global minimum
x* € R? (such functions exist?). Consequently f = ¢

and f, = ZTqu Letting 6 := Ep (Y, vi)Q}, we have

o [IV5:@) = Viu@)IP] = =5 IV(a) - Vo(a")|?
< 22 (1) - (=),

where the last inequality follows from Proposition A.1.

So, (f,D) ~ ES(L) for £ = %52

aThere exists invex functions that satisfy these conditions (Karimi et al., 2016). As an
example ¢(z) = @2 +3 sin? () is smooth, non-convex, and has a unique global minimizer.

2.2. Gradient noise

Our second key assumption is finiteness of gradient noise,
defined next:

Assumption 2.3 (Finite Gradient Noise). The gradient
noise o = o(f, D), defined by

2= Ep[|V (=), ®)
is finite.

This is a very weak assumption, and should intuitively be
really seen as an assumption on D rather than on f. For
instance, if the sampling vector v is non-negative with prob-
ability one and E[v; }_; v;] is finite for all 7, then o is finite.
When (1) is the training problem of an over-parametrized
model, which often occurs in deep neural networks, each
individual loss function f; attains its minimum at x*, and
thus V f;(z*) = 0. It follows that o = 0.

2.3. Key lemma and connection to the weak growth
condition

A common assumption used to prove the convergence of
SGD is uniform boundedness of the stochastic gradients’:
there exist 0 < ¢ < oo such that E|V f,(z)||* < ¢ for
all . However, this assumption often does not hold, such
as in the case when f is strongly convex (Bottou et al.,
2018; Nguyen et al., 2018). We do not assume such a
bound. Instead, we use the following direct consequence
of expected smoothness to bound the expected norm of the
stochastic gradients.

Lemma 2.4. If (f, D)

Ep [[IVfo(2)|?] < 4L(f(z) -

~ ES(L), then
f(z*) +20%  (9)

When the gradient noise is zero (¢ = 0), inequality (9) is
known as the weak growth condition (Vaswani et al., 2018).
We have the following corollary:

Corollary 2.5. If (f,D) ~ ES(L) and if o = 0, then f
satisfies the weak growth condition

Ep[IV fo(2)|°] < 20(f(z) - f(%)),

30r it is assumed that E||V f,(z*)||?> < ¢ for all k iterates.
But this too has issues since it implicitly assumes that the iter-
ates remain within a compact set, and yet it it used to prove the
convergence to within a compact set, raising issues of a circular
argument.
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with p = 2L.

This corollary should be contrasted with Proposition 2
in (Vaswani et al., 2018) and Lemma 1 in (Nguyen et al.,
2018), where it is shown, by assuming the f; functions to be
smooth and convex, that the weak growth condition holds
with p = 2L,,,,x. However, as we will show in Lemma E.1,
Lyax > L, and hence our bound is often tighter.

3. Convergence Analysis

3.1. Main results

We now present our main theorem, and include its proof
to highlight how we make use of expected smoothness and
gradient noise.

Theorem 3.1. Assume f is p-quasi-strongly convex and

that (f,D) ~ ES(L). Choose v¥ = v € (0, 5] for all
k. Then iterates of SGD given by (6) satisfy:

” " 2vo2
Ellz* — 2*)|> < (1 — yu)* [2° — 2 ||2+”T. (10)

Hence, given any € > 0, choosing stepsize

ep

. 1
’Y:mm{m7 4(72}; (11)

and
2L 4 2 2 0 _ .%x|2
k> max{, 02} log (M> ,  (12)
©woep €
implies E[|z* — 2*[|2 < e.

Proof. Let r* = zF — 2*. From (6), we have

®
[ e e A Al

= [[rFI? = 29 (", V for (@) + A2V fon ()12

k

Taking expectation conditioned on =" we obtain:

®
Ep|r* ™ = [[rF]|* — 29(r*, V f(2*))
+7°Ep ||V for ()2

2 (1= ) )? - 2 [f () — F(a)
+ VEp||V for ()2

Taking expectations again and using Lemma 2.4:
k12 9 k|2 2 2
Elr*" < (1 = y)E[r™]1° + 2970

+ 29(2yL — DE[f(2*) — f(2*)]
< (1= ywE[r*|* + 29%07,

where we used in the last inequality that 2v£ < 1 since
v < i Recursively applying the above and summing up
the resulting geometric series gives

k—1
. |
Ellr? < @ —ym)" 07 +2> (1 - yp) 120
=0
i 2vo?
< (1—w)"\\r°||2+”7. (13)

To obtain an iteration complexity result from the above, we
use standard techniques as shown in Section A.1. [

Note that we do not assume f; nor f to be convex. Theo-
rem 3.1 states that SGD converges linearly up to the additive
constant 2o /1 which depends on the gradient noise o>
and on the stepsize y. We obtain a more accurate solu-
tion with a smaller stepsize, but then the convergence rate
slows down. Since we control D, we also control o2 and £
(we compute these parameters for several distributions D in
Section 3.3).

Furthermore, we can control this additive constant by care-
fully choosing the stepsize, as shown in the next result.

Theorem 3.2 (Decreasing stepsizes). Assume f is p-
quasi-strongly convex and that (f,D) ~ ES(L). Let
K := L/ pand

1
— for k <A4[K]
& 2L
T TN 2%+1 14
———— for k>4[K].
(k+1)%u
If k > 4[K], then SGD iterates given by (6) satisfy:
2 2
k a2 08  16[K] 0 112
Bt — | < G + =Sl — 0. (15)

3.2. Choosing D

For (6) to be efficient, the sampling vector v should be
sparse. For this reason we will construct v so that only a
(small and random) subset of its entries are non-zero.

Before we formally define v, let us first establish some ran-
dom set terminology. Let C' C [n] and let ec := >, €i,
where {e1,...,e,} are the standard basis vectors in R".
These subsets will be selected using a random set val-
ued map S, in the literature referred to by the name sam-
pling (Richtarik & Takac, 2016; Qu & Richtarik, 2016).
A sampling is uniquely characterized by choosing subset
probabilities p > 0 for all subsets C' of [n]:

P[S=C]=pc, VCC|n], (16)
where chn] pc = 1. We will only consider proper sam-

plings. A sampling S is called proper if p; e Plie S| =
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> cuicc Po is positive for all i.

The first analysis of a randomized optimization method with
an arbitrary (proper) sampling was performed by Richtarik
& Takac (2016) in the context of randomized coordinate
descent for strongly convex functions. This arbitrary sam-
pling paradigm was later adopted in many other settings,
including accelerated coordinate descent for strongly con-
vex functions (Hanzely & Richtarik, 2018), coordinate and
accelerated descent for convex functions (Qu & Richtarik,
2016), primal-dual methods (Qu et al., 2015; Chambolle
et al., 2018), variance-reduced methods with convex (Csiba
& Richtiarik, 2015) and nonconvex (Horvath & Richtarik,
2018) objectives. Arbitrary sampling arises as a special case
of our more general analysis by specializing the sampling
vector to one dependent on a sampling S. We now define
practical sampling vector v = v(.59) as follows:

Lemma 3.3. Let S be a proper sampling, and let P=
Diag(p1, ..., Pn)- Then the random vector v = v(.S) given
by

v=Pleg (17)

is a sampling vector.

Proof. Note that v; = 1(;cg)/pi, Where 1(;cg) is the
indicator function of the event i € S. It follows that
E[vi] = E [1ies)]/pi = 1. O

We can further specialize and define the following com-
monly used samplings. Each sampling S gives rise to a
particular sampling vector v = v(.5) (i.e., distribution D),
which in turn gives rise to a particular stochastic reformula-
tion (4) and SGD variant (6).

Independent sampling. The sampling S includes every
1, independently, with probability p; > 0. This type of
sampling was considered in different contexts in (Horvath
& Richtarik, 2018; Hanzely & Richtérik, 2018).

Partition sampling. A partition G of [n] is a set consisting
of subsets of [n] such that UccgC = [n] and C; N C; = ()
for any C;, C; € G with ¢ # j. A partition sampling S'is a
sampling such that pc = P[S = C] > 0 forall C € G and
2cegbc =1

Single element sampling. Only the singleton sets {i} for
i =1,...,n have a non-zero probability of being sampled;
thatis, P[|S| = 1] = 1. We have P [v(S) = e;/p;] = p;.

T-nice sampling. We say that S is a 7—nice if S samples
from all subsets of [n] of cardinality 7 uniformly at ran-
dom. In this case we have that p; = T for all i € [n]. So,
P [v(S) = Zec| = 1/ (7) for all subsets C C {1,...,n}
with 7 elements.

3.3. Bounding £ and o>

By assuming that the f; functions are convex and smooth
we can calculate closed form expressions for the expected
smoothness £ and gradient noise o2. In particular we make
the following smoothness assumption:

Assumption 3.4. There exists a symmetric positive defi-
nite matrix M; € R%*9 such that

fl+R) < £i(@) + (Vi(2), B + % 2. (8)

for all z,h € R% and i € [n], where ||h||i,I =
(M;h, h) . In this case we say that f; is M;—smooth. Fur-
thermore, we assume that each f; is convex.

To better relate the above assumption to the standard smooth-
ness assumptions we make the following remark.

Remark 3.5. As a consequence of Assumption 3.4 we
also have that each f; is L; := Apax(M;)—smooth and
fis L = 1X,ax(30  My)-smooth. Let Lyax :=
maxie[n] Li.

Using Assumption 3.4 and a sampling we establish the
following bounds on L.

Theorem 3.6. Let S be a proper sampling, and v = v(.S)
(i.e., v is defined by (17). Let f; be M;-smooth, and
P € R"*" be defined by P;; =P[i € S & j € S]. Then

(f,D) ~ ES(L), where
L < Lpax = max @Lc
i€l | gaec Pi
1 )\max
< “max{ Y Py () . (19)
niel) | <= pip;

and Lo = +Amax(X 0 piij). If |S| = 7, then

L S Emax S Lmax :maX)\max(Mi)- (20)

1€[n]

By applying the above result to specific samplings, we ob-
tain the following practical bounds on L:

Proposition 3.7. (i) For single element sampling .S, we

have ) p i
Lomax = — max M 21)
n i€n] Di

(ii) For partition sampling S with partition G, we have

1 1
Emax = ﬁ Iggg Iz)\max(z M]) o (22)

JjEC
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For 7-nice sampling and independent sampling, we get the
following very informative bounds on L.

Proposition 3.8. (iii) For independent sampling S, we

have ) p Vi
L < L + max _piM. (23)
i€n]  Pi n
(iv) For 7-nice sampling, we have
n(t —1) n—rt
L< L Amax (M; 24
- 7( 1) +T(n71)mz‘ax (M) @4)

Gazagnadou et al. (2019) were the first to suggest using (24)
as an approximation for £. Through extensive experiments,
they showed that the bound (24) is very tight. Here we give
the first proof that (24) is indeed a valid upper bound.

For v = v(S) given by (17), formulas for the gradient noise
o? are provided in the next result:

Theorem 3.9. Let h; = V f;(z*). Then

=3 _”_
" et PP

(hi, hj). (25)

Specializing the above theorem to specific samplings S
gives the following formulas for o

Proposition 3.10. (i) For single element sampling .S, we

have 1 o
2 _ 12
ot=—> 1 (26)

1€[n] v

(i1) For independent sampling .S with E[|.S|] = 7, we have

1
0-2:?2

1€[n]

Pi 2. @7)

1
bi
(iii) For 7-nice sampling S, we have

1 n—1
2 _ . 12
@ = 1 E I[7s]= (28)
i€[n]

(iv) For partition sampling S with partition G, we have

1 1
2 _ 2
ol =— > p—c||§ hql|?. (29)

ceg ieC

Generally, we do not know the values of h; = V f;(z*). But
if we have prior knowledge that 2* belongs to some set C,
we can obtain upper bounds for o2 for these samplings from
Proposition 3.10 in a straightforward way.

4. Optimal Mini-Batch Size

Here we develop the iteration complexity for different
samplings by plugging in the bounds on £ and o given
in Section 3.3 into Theorem 3.1. To keep the nota-
tion brief, in this section we drop the logarithmic term
log (2[|z° — #*||?/€) from the iteration complexity results.
Furthermore, for brevity and to better compare our results
to others in the literature, we will use L; = Apax(M;)
and Lyax = max;cp) L; (see Remark 3.5). Finally let

h= % ZiG[n] ||h¢||2 for brevity.

Gradient descent. As a first sanity check, we consider the
case where |S| = n with probability one. That is, each
iteration (6) uses the full batch gradient. Thus 0 = 0 and
it is not hard to see that for 7 = n in (24) or p; = 1 for all
i in (23) we have L,.x = L. Consequently, the resulting
iteration complexity (12) is now k > 2L /u. This is exactly
the rate of gradient descent, which is precisely what we
would expect since the resulting method is gradient descent.
Though an obvious sanity check, we believe this is the first
convergence theorem of SGD that includes gradient descent
as a special case. Clearly, this is a necessary pre-requisite
if we are to hope to understand the complexity of mini-
batching.

4.1. Nonzero gradient noise

To better appreciate how our iteration complexity evolves
with increased mini-batch sizes, we now consider indepen-
dent sampling with |S| = 7 and 7-nice sampling.

Independent sampling. Inserting the bound on £ (23) and

o (27) into (12) gives the following iteration complexity

P T—p; . 21—pi—
kZmax{L—i—max Pip =2 ph}. (30)
M i€[n] MP; He np;

This is a completely new mini-batch complexity result,
which opens up the possibility of optimizing the mini-batch
size and probabilities of sampling. For instance, if we
fix uniform probabilities with p; = Z then (30) becomes
k> % max {I(7), ()}, where

Z(T) =L+ (1 - 1) Linax; T(T) = 3 (1 — 1> h.
T n HENT N

(€29)
This complexity result corresponds to using the stepsize
1 1 1
= —min{ —, —— 32
r= 3 2

if 7 < n, otherwise only the left-hand-side term in the
minimization remains. The stepsize (32) is increasing since
both [(7) and r(7) decrease as T increases.

With such a simple expression for the iteration complexity
we can choose a mini-batch size that optimizes the rotal com-
plexity. By defining the total complexity T'() as the number
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of iterations k times the number of gradient evaluations (7)
per iteration gives

where we have dropped the logarithmic term
log (||z° — 2*||?/€). In this setting, due to Corol-
lary 2.5, we know that f satisfies the weak growth condition.

2 2(n—=7)h .
T(7) := — max {TTZL 4 (n = 7) Linaxs (n—1) } . (33) Thus our results are directly comparable to those developed

un

Minimizing T'(7) in 7 is easy because T'(7) is a max of a
linearly increasing term 7 x [(7) and a linearly decreasing
term 7 x r(7) in 7. Furthermore n x I(n) > 0 = n x r(n).
Consequently, if /(1) > (1), then 7* = 1, otherwise

5T
Eh - Lmax

2R — Lyax + 0L

He

(34)

T =n

Since r(1) is proportional to the noise and 1/e and I(1)
is proportional to the smoothness constants the condition
(1) < r(1) holds when there is comparatively a lot of noise
or the precision is high. As we will see in Section 4.2 this
logic extends to the case where the noise is zero, where the
optimal mini-batch size is 7* = 1.

T-nice sampling. Inserting the bound on £ (24) and

o (28) into (12) gives the iteration complexity k >

% max{l(7),r(7)}, where

_ n(r — 1) n—r

Z(T) - T(TL _ 1) T(n . 1) Lmaxa (35)
 2(n—r1) E

= e (36)

which holds for the stepsize
1 1 1
vzmin{ } (37)

Again, this is an increasing function in 7.

We are now again able to calculate the mini-batch size
that optimizes the total complexity T'(7) given by T'(1) =
277 max{l(7),r(7)}. Once again T'(7) is a max of a linearly
increasing term 7 x [(7) and a linearly decreasing term
7 xr(7) in 7. Furthermore r(n) = 0 < I(n). Consequently,

if (1) < (1) then 7* = 1, otherwise

2
L_Lmax'i_a

" L—L 2
ni— max"'a

h 38
—. (38)

4.2. Zero gradient noise

Consider the case where the gradient noise is zero (o = 0).
According to Theorem 3.1, the resulting complexity of SGD
with constant stepsize vy = & is given by the very simple
expression

k> %7 (39
I

in (Ma et al., 2018) and in (Vaswani et al., 2018).

In particular, Theorem 1 in (Ma et al., 2018) states that

when running SGD with mini-batches based on sampling
with replacement, the resulting iteration complexity is

k> £ T—1

woT

+@17
woT

(40)

again dropping the logarithmic term. Now gaining insight
into the complexity (39) is a matter of studying the expected
smoothness parameter £ for different sampling strategies.

Independent sampling. Setting o = 0 (thus A = 0) and
using uniform probabilities with p; = T in (30) gives

2L (1 1\ 2Lmax
=+ (—) Zomax, (41)
I T n) n

k>

7 —nice sampling. If we use a uniform sampling and o = 0
then the resulting iteration complexity is given by
ko> MrZD2D
T(n—1) p

n—7 2Lp.x
T(n—1)

(42)

Iteration complexities (40), (41) and (42) tell essentially the
same story. Namely, the complexity improves as 7 increases
to n, but this improvement is not enough when considering
the total complexity (multiplying by 7). Indeed, for total
complexity, these results all say that 7 = 1 is optimal.

5. Importance Sampling

In this section we propose importance sampling for single
element sampling and independent sampling with E[|.S|] =
T, respectively. Due to lack of space, the details of this
section are in the appendix, Section J. Again we drop the
log term in (12) and adopt the notation in Remark 3.5.

5.1. Single element sampling
For single element sampling, plugging (21) and (26) into

(12) gives the following iteration complexity

2 € L; 2 1
- Fnax =0 25T S
€L n i€n] p; N

i1€[n]

where 0 < p; < land} ., pi = 1. In order to optimize
this iteration complexity over p;, we need to solve a n dimen-
sional linearly constrained nonsmooth convex minimization
problem, which could be harder than the original problem
(1). So instead, we will focus on minimizing £, and 2
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over p; seperately. We will then use these two resulting
(sub)optimal probabilities to construct a sampling.

In particular, for single element sampling we can recover the
partially biased sampling developed in (Needell et al., 2016).
First, from (21) it is easy to see that the probabilities that
minimize L.y are pf =1L/ Zje[n] L, for all i. Using
these suboptimal probabilities we can construct a partially
biased sampling by letting p; := 1pF + 5. Plugging this
sampling in (21) gives Lyax < 2L = %Zie[n] L;, and
from (26), we have 02 < %Zie[n] |hi||? := 2h. This
sampling is the same as the partially biased sampling in
(Needell et al., 2016). From (30) in Theorem 3.1, we get
that the total complexity is now given by

4L 8h
kZmaX{,2}. 43)
ap’ €

For uniform sampling, £, = max;e|n] L;>Lando? =
L5, efn 1P |2. Hence, compared to uniform sampling, the
iteration complexity of partially biased sampling is at most
two times larger, but cguld be n/2 smaller in the extreme
case where L.x = n L.

5.2. Minibatches

Importance sampling for minibatches was first considered
in (Csiba & Richtarik, 2018); but not in the context of SGD.
Here we propose the first importance sampling for mini-
batch SGD. In Section J.2 in the appendix we introduce the
use of partially biased sampling together with independent
sampling with |S| = 7 and show that we can achieve a total
complexity of (by Proposition J.3)

2\ 2L /2 1 7
kZmax{(l—),(—)ShQ}7 44)
T) au \T N/ €U

which not only eliminates the dependence on Ly;,,x, but also
improves as the mini-batch size 7 increases.

6. Experiments

In this section, we empirically validate our theoretical re-
sults. We perform three experiments in each of which we
highlight a different aspect of our contributions.

In the first two experiments we focus on ridge regression
and regularized logistic regression problems (problems with
strongly convex objective f and components f;) and we
evaluate the performance of SGD on both synthetic and
real data. In the second experiment (Section 6.2) we com-
pare the convergence of SGD for several choices of the
distribution D (different sampling strategies) as described in
Section 3.2. In the last experiment (Section 6.3) we focus on
the problem of principal component analysis (PCA) which

n = 1000,d = 400 n=4177,d =8

@~ Constant step size
Decreasing step size

@~ Constant step size
Decreasing step size

“\ Regime switch i \ Regime switch

Error
E

T 100 15 150 155 200
Epoch number
n = 2000,d = 100

B i)
Epoch number
n =1605,d = 119

Y
‘ —@— Constant step size —@— Constant step size

Decreasing step size Decreasing step size

Regime switch Regime switch

o | ah )
2 g e
WA G A AN~

510 13 55 B0 175 20
Epoch number

Figure 1. Comparison between constant and decreasing step size
regimes of SGD. Ridge regression problem (first row): on left
- synthetic data, on right - real dataset: abalone from LIBSVM.
Logistic regression problem(second row): on left - synthetic data,
on right - real data-set: ala from LIBSVM. In all experiments
A=1/n.

by construction can be seen as a problem with a strongly
convex objective f but with non-convex functions f; (Allen-
Zhu & Yuan, 2016; Garber & Hazan, 2015; Shalev-Shwartz,
2016).

In all experiments, to evaluate SGD we use the relative
Hfg:iii”g. For all implementations, the start-
ing point x” is sampled from the standard Gaussian. We
run each method until ||z* — 2*||> < 1073 or until a pre-
specified maximum number of epochs is achieved. For the

horizontal axis we always use the number of epochs.

€ITror measure
0

For more experiments we refer the interested reader to Sec-
tion K of the Appendix.

Regularized Regression Problems: In the case of the
ridge regression problem we solve:

n

; 1 - 2, A2
min f(z) = o~ ;(A[u Jz = yi)” + el
while for the L2-regularized logistic regression problem we
solve:

) 1 & , A
min f(z) = 2 Zlog (14 exp(—y:Ali,:]x)) + §II$H2~
=1

In both problems A € R"*4 ¢ € R™ are the given data
and A > 0 is the regularization parameter. We generated
synthetic data in both problems by sampling the rows of
matrix A (A[i,:]) from the standard Gaussian distribution
N (0, 1). Furthermore for ridge regression we sampled the
entries of y from the standard Gaussian distribution while in
the case of logistic regression y € {—1, 1}" where P(y; =
1) = P(y; = —1) = 3. For our experiments on real data
we choose several LIBSVM (Chang & Lin, 2011) datasets.
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n =4912,d =300, A = 100/n, e =107, 7 = n/5

—@— singletons
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1071 T
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Figure 2. Performance of SGD with several minibatch strategies
for logistic regression. Above: the w3a data-set from LIBSVM.
Below: standard Gaussian data.

6.1. Constant vs decreasing step size

We now compare the performance of SGD in the constant
and decreasing stepsize regimes considered in Theorems
3.1 (see (11)) and 3.2 (see (14)), respectively. Here we
use a uniform single element sampling. As expected from
theory, we see in Figure 1 that the decreasing stepsize regime
is vastly superior at reaching a higher precision than the
constant step-size variant. In our plots, the vertical red line
denotes the value of 4] £/ 11] predicted from Theorem 3.2
and highlights the point where SGD needs to change its
update rule from constant to decreasing step-size.

6.2. Minibatches

In Figures 2 and 5 we compare the single element sampling
(uniform and importance), 7 independent sampling (uni-
form, uniform with optimal batch size and importance) and
7 nice sampling (with some 7 and with optimal 7*). The
probabilities of importance samplings in the single element
sampling and 7 independent sampling are calculated by for-
mulas (67) and (77) in the Appendix. Formulas for optimal
minibatch size 7* in independent sampling and 7-nice sam-
plings are given in (34) and (38), respectively. Observe that
minibatching with optimal 7* gives the best convergence.
In addition, note that for constant step size, the importance
sampling variants depend on the accuracy e. From Figure 2
we can see that before the error reaches the required accu-

racy, the importance sampling variants are comparable or
better than their coresponding uniform sampling variants.

6.3. Sum-of-non-convex functions

In Figure 3, our goal is to illustrate that Theorem 3.1
holds even if the functions f; are non convex. This ex-
periment is based on the experimental setup given in (Allen-
Zhu & Yuan, 2016). We first generate random vec-
tors ay,...,a,,b € R? from U(0,10) and set A :=
L 3" | a;a; . Then we consider the problem:

1 n
mxin f(z) = oM ZxT (aia] + D))z +b'z,
i=1

where D;, i € [n] are diagonal matrices satisfying D :=
Dy + -+ D,, = 0. In particular, to guarantee that D = 0,
we randomly select half of the matrices and assign their
j-th diagonal value (D;);; equal to 11; for the other half
we assign (D;);; to be —11. We repeat that for all diagonal
values. Note that under this construction, each f; is a non-
convex function. Once again, in the first plot we observe that
while both are equally fast in the beginning, the decreasing
stepsize variant is better at reaching higher accuracy than the
fixed stepsize variant. In the second plot we see, as expected,
that all four minibatch versions of SGD outperform single
element SGD. However, while the 7-nice and 7-independent
samplings with 7 = n/5 lead to a slight improvement only,
the theoretically optimal choice 7 = 7 leads to a vast
improvement.

n = 1000, d = 100

10
—@— Constant step size

Decreasing step size

Error

10 e OV VLY VU aer S VA ey

1073

0 20 40 60 80 100
Epoch number

n =1000,d = 10,7 = n/5
—@— Singletons —— 7T-nice
-

7-ind
—— 778 = 7*-ind

779 = T*-nice

1073 L\

1074 \

0 200 400 600 800 1000 1200 1400
Epoch number

Figure 3. Above: Comparison between constant and decreasing
step size regimes of SGD for PCA. Below: comparison of different
sampling strategies of SGD for PCA.
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APPENDIX
SGD: General Analysis and Improved Rates

A. Elementary Results
In this section we collect some elementary results; some of them we use repeatedly.

Proposition A.1. Let ¢ : R* — R be Lg—smooth, and assume it has a minimizer x* on R?. Then
IVe(z) — Vo(a™)|? < 2Ly(d(z) — p(a)).
Proof. Lipschitz continuity of the gradient implies that
B+ 1) < 0(x) + (Vo). h) + 22 A1

Now plugging h = —L%)Vcﬁ(x) into the above inequality, we get ﬁHVﬂx)HQ < ¢(z) — oz +h) < d(x) — d(x*). It
remains to note that Vg(z*) = 0. O

In this section we summarize some elementary results which we use often in our proofs. We do not claim novelty; we but
we include them for completeness and clarity.

Lemma A.2 (Double counting). Leta; c € Rfori =1,...,n and C € C, where C is some collection of subsets of [n].
Then .
DD mo = Y, >, ac (45)
CecieC i=1 CeC : ieC

Lemma A.3 (Complexity bounds). Let £ >0, 0 < p<1land0 < ¢ < 1. If k£ € N satisfies

1 E
2 o (5): o

then
pF < (1-c)E. (47)

Proof. Taking logarithms and rearranging (47) gives

log <1E—c> < klog (;) . (48)

Now using that log (%) >1—p,for0 < p <1 gives (46). O

A.1. The iteration complexity (12) of Theorem 3.1

2
To analyse the iteration complexity, let € > 0 and choosing the stepsize so that QVT" < se, gives (11). Next we choose k so

that

1
2

1
k
(L =ym)" [r°]* < 5e

Taking logarithms and re-arranging the above gives

012
log (2“ I ) < klog( ! ) . 49)
€ I—yp
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Now using that log ( ) >1—p,for0 < p <1 gives

1
P
1 2 012
b ox g ()
Y €

1 4 2 2 0112
w max{?ﬁ, 4o }log (”7" ” > (50)
7 e

€

Which concludes the proof.

B. Proof of Lemma 2.4
For brevity, let us write E[] instead of Ep[-]. Then
E|Vfo(2)|* = ElIV fo(2) = Vfo(a*) + Vfo(z")]?
< 2E|Vfu(z) = Vful2)|* + 2E[V fu (a") |
< ALf(x) = f(@*)] + 2BV fu ()%,

The first inequality follows from the estimate ||a + b||?> < 2||a||? + 2||b]|?, and the second inequality follows from (7).

C. Proof of Theorem 3.2
Proof. Let g := 0 sz;r)éﬂ and let £* be an integer that satisfies v+ < ﬁ In particular this holds for

k* > [4K —1].

Note that -y, is decreasing in k and consequently v < i for all & > k*. This in turn guarantees that (13) holds for all
k > k* with -y, in place of ~, that is
202 (2k +1)2

k2
SE|lr*|]® + S — (51)

E k+1 2<7 )
L (k+1) 12 (k+ 1)

Multiplying both sides by (k + 1)? we obtain

202 2k +1\?
(k4 B[P < k2E|rk||2+”( - )
I

2 \k+1
, 802
< KE|rF)?+ 22
7
where the second inequality holds because 2,5%11 < 2. Rearranging and summing from ¢ = k* ... k we obtain:
k kL gg?
SO lE+ DRI - R < Y =5 (52)
t=k* = P
Using telescopic cancellation gives
* 802 (k — k*
(k+1)’E[lr*HH* < (K*)’Er™|1* + (uz)
Dividing the above by (k + 1)2 gives
k*)? * 8o2(k — k)
]E k+12 < ( ]E k™12 ) 53
P40 < GBI 1P+ 53

For k < k* we have that (13) holds, which combined with (53), gives

k*)Q 1 k*
k+12 < ( _® 0|2
Bl s g (mgp) I

0.2 . (k*)2
+ 21 <8(k—k)+ e > (54)
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Choosing k* that minimizes the second line of the above gives k* = 4[], which when inserted into (54) becomes

16[K2 1\**
e 1 (o I

= k+1)2 0 2K
12 8(k — 2[K])
2 (k1)
16[K]? ona . 02 8
_— —— 55
= 62(k+1)2||r || +M2k+17 ( )
where we have used that (1 — ﬁ)‘u <e 2forall z > 1.
O
D. Proof of Theorem 3.6
Proof. Since v; = v;(S) = 1gcs) pi and since f; is M;-smooth, the function
1 — 1 fi(x)
v = — i P = — 5 56
fule) = 5 3 flao = 32 (56)
i=1 €S
is Lg—smooth where
1 M;
Ls = —Amax (Z ) :
" ies Pi
We also define the following smoothness related quantities
L= Z pﬁLCa Lmax = max £i7 and;  Lyax = max )\max(Mi)~ (57)
C:ieC pi ! i€n]

Since the f;’s are convex and the sampling vector v € R‘i has positive elements, each realization of f;, is convex and smooth,
thus it follows from equation (2.1.7) in Theorem 2.1.5 in (Nesterov, 2013) that

IV£o(@) = VW < 2Ls (fo(x) = foly) = (VHuly),z = 1)) (58)

Taking expectation in (58) gives

E[|V fo(z) = V£, (y)[7] < 2> “peLe (foe) (@) = foe) W) = (Viue) W),z — 1))
C

O 23 peLe S (file) — fily) — (Vi) x — 1)
C

jec P

Lemma A2 2 > PciLc (fiz) = fily) = (Vfily),z —y))
"=l cuec P
(19)

<2 Lo (i) — i) ~ (Vi) 7~ )
=1
— 2£max (f(ﬂ?) - f(y) - (Vf(y),:c - y>) .
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Furthermore, for each 7,

1 M,
L= 2o = - ENL(YE (59)
ciec Pi " caec Pi jec Pi
N
" caec Pi jec pj

Lemm:a A2 i Z Z pic)\max(Mj)

i3 el & jec PiPi
1 < P,
= . — )‘maX(MJ)'
n = pip;
Hence,
1 Amax (M.
Liax < —max{ Y p,, Amex (M) L (60)
N i€ln] jem] Pipj

Let y = z* and notice that V f(z*) = 0, which gives (19). We prove (20) in the following slightly more comprehensive

LemmaE.1. 0

E. Bounds on the Expected Smoothness Constant £

Below we establish some lower and upper bounds on the expected smoothness constant £ = L£,,,. These bounds were
referred to in the main paper in Section 2.3. We also make use of notation introduced in Section 3.3.

Lemma E.1. Assume that there exists 7 € [n] such that |S| = 7 with probability 1. Let

[ o= [LS | 1 E S Z @Lc,
C: zGC

and

s o= 15y L

€S

Then E [Ls] = E [Lg]. Moreover,
L < E [ES] < Emax < Lmax~ (61)

Proof. Define Mg := 1% pﬁ and note that f is - Eie[n] M, —smooth. Furthermore

n

E[Ms}nE[; G ]n;piE (ies)] 1§M

We will now establish the inequalities in (61) starting from left to the right.

(PartI L < E[Lg]). Recalling that Lg = Apax(Mg) and by Jensen’s inequality,

L = Anax (E [MS]) <E [)‘max(MS)] =K [LS]
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Furthermore

E[Ls) =E|> L

1
= - Zpiﬂi
ics T

(2) %Z Z chi Lemrg A2 %ZZPCLC

i C:ieC C ieC

1
72' pcLc %:pc c=E[Lg]

(Part II E [Lg] < Lax). We have that

_ 1 1
LS — @ ZEZ S @ maxﬁqp = EmaX'
€S €S

1€[n]

(Part III £,,,,x < Lyayx)- Finally, since

; 1
LC’ < ; ZLj < Lmaxy
jec
we have that
(57)+(62)

L; < Z pﬁ% Z Lj (6§2) Z pfcl‘Lmax = Lmax-

jeC C:ieC Pi

Consequently taking the maximum over ¢ € [n] in the above gives Limax < Limax-

F. Proof of Proposition 3.7

Proof. First note that by combining (19) and (59) we have that

Lonax & max Z @LC
i€[n] C:ieC Di

(2) max 1 Z pfc)\max Z%

€l | M dgee Pi jec Pi
(i) By straight forward calculation from (63) and using that each set C' is a singleton.

(ii) For every partition sampling we have that p; = p¢ if i € C, hence

(63) 1 Di M,
£max = maxs§ — Z J)\max Z —
€l | M gec Pi jec Po

) lmax Z i)\maX(ZMj)

.
€l | gaec Pe jec

1
= - 7>\max M;
n ¢ | pe QM)
jeC

(62)

(63)
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G. Proof of Proposition 3.8

Proof. First, since f; is L;-smooth with L; = A\,.x (M) and convex, it follows from equation (2.1.7) in Theorem 2.1.5
in (Nesterov, 2013) that

IV fi(z) = VL) < 2Li(fi(x) — fily) — (Vfi(y),z — ). (64)

Since f is L-smooth, we have
IVf(z) = VI?* <2L(f(x) — fy) — (V)2 —y)). (65)
Noticing that
VA @) - VEME = — |3 5<sz-<x> VW)
ics I
1
- Z < (V) = V). 7 (V) - ij<y>>> ,

we have

BV - VAW = Xre <np (Vfilw) - Wy)),%(W@—wj(y)»

2

i,jeC
- Z > PC< () — sz-(y)),;(ij(x)—ij(y))>
i,j=1C:,jeC Pj
n Pij 1
- 2= s <n<sz'(fc) = V/ily), (Vi) = ij(y))> .

Now consider the case where P;; / (pipj) = ¢g for i # j. Recalling that P;; = p; we have from the above that

n

BV @) - VAW = Sea (5(TA@) - VAW, 2 (Th0) = TE00)) + 3 5 - 19(0) = VA
i#j i=1

= 3 a(HVAE) ~ VA (V4 - V)

ij=1

"1 1
N Z 2y (L= piea) Vi) = V)

< o|Vi) - Vi)
+QZ%%< = pica) (fi(@) = fily) = (Vfi(), 2 — )

L < L+ max il (1 —pica). (66)
(i) For independent sampling, we have that P;; = p;p; for i # j, consequently co = 1. Thus (66) gives (23).

(ii) For 7-nice sampling, we have that P;; = ;ET 1)) for j # iand P;; = p; = T, hence c; = fé;:g and (66)

gives (24). O
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H. Proof of Theorem 3.9
Proof.
n 2 n 2 2
=E[|Vf,(z)]?] = E %Zvja(z Joi|| | = %E S Vil | = %E | > ihl
1=1 1=1 €S
= %E z;liesllhz = %]E leg zESljes 1ap1jhj>
1= 1=1 7=

I. Proof of Proposition 3.10
Proof. (i) By straight calculation from (25).

(ii) For independent sampling S, P;; = p;p; for i # j, hence,

1 1 1
2 74] 2
S-S p”huh =D <m,hj>+ngz<m1) )
i€[n]

i,j€[n] i,j€[n]
1
= LIvrEE Z ( )= ¥ (5 1) Il
Di
i€[n]
-2
(iii) For 7-nice sampling S, if 7 = 1, it is obvious. If 7 > 1, then P;; = C(’jif fori # j, and p; = T for all i. Hence,
1 P;;
o? = = > —L(hy,hy)
2 19
n ijeln ]png
1 T(r—1) 9
= — _ hz,h —||h;
=D o R +o 3 Dl
(e le[”]
- 1 Z T
- iy 1bj
T\ " iem
1 T—1 n—rt
- = T {hichy
nT Z n—1< J>+Zn—1
i,5€[n] 1€[n]
1 n—r71
- . hi|%.
nt n—1 '§] IRl

(iv) For partition sampling, P;; = pc if 4, j € C, and P;; = 0 otherwise. Hence,

o? = — Z Py (hi, hj) = QZZ hz,h = QZ—HZhHQ
pibj n n

1,j€[n] ceg L]EC CEQ ieC
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J. Importance sampling
J.1. Single element sampling

From (21) it is easy to see that the probabilities that minimize L,y are pf =L/ jeln] L, for all 7, and consequently
Lanax = L. On the other hand the probabilities that minimize (26) are given by p?~ = |[hi||/ 32 jeqn 1, for all 4, with
0% = (Vi Ihall/m)? := 02,

Importance sampling. From pf and p7 2, we construct interpolated probabilities p; as follows:

2
pi = pi(@) = apf + (1 — a)p] | (67)
where « € (0,1). Then 0 < p; < 1 and from (21) we have
11 L; 1-
Loax < max ——— = —L

a . Eie[n] pZL(T) [0}
Similarly, from (26) we have that 02 < -2

T—aOopt- Now by letting p; = p;(a), from (30) in Theorem 3.1, we get an upper
bound of the right hand side of (12):

_ 102
max 4 2E _2%omt L (68)
ap’ (1 —a)ep?
By minimizing this bound in o we can get
L
o= g (69)
20—0pt/6/’0 + L
and then the upper bound (68) becomes
402 2L 2L 402
—2 4+ = <2maxq—, —2 4, (70)
Ep H BoEp

where the right hand side comes by setting & = 1/2. Notice that the minimum of the iteration complexity in (12) is not less
2L 4o t
than max { a2 _opt
Boep

times larger than the minimum of the iteration complexity in (12) over p;.

}. Hence, the iteration complexity of this importance sampling(left hand side of (70)) is at most two

J.2. Independent sampling
For the independent sampling S, in this section we will use the following upper bound on £ given by

1—p L;

L.
Loax < = } max —, 71
- ; n i€n] pP;i N 7D
which follows immediatly from (23) by using that L < %L 2?21 L;:=L.
Calculating p£ (7). Minimizing the upper bound of Lrnax in (71) boils down to minimizing max; e[y, (pi —1)L;, which
is not easy generally. Instead, as a proxy we obtain the probabilities p; by solving
min MaX;e|n] % . 72)
s.t. Zie[n] pi =T, 0< Pi S 17V7"

J

Letg; = Z:ﬁ -rforalli,and T = {i|g; > 1}. If T = {), it is easy to see p; = p~(7) = ¢; solves (72). Otherwise,

in order to solve (72), we can choose p; = p~(7) = 1fori € T,and ¢; < p; = pF(r) < 1fori ¢ T such that
> ieln L (1) = 7. By letting p; = pf (1), we have that (72) becomes

1 1 1\ —
Loax < — 1+ - Li—minL; | <(1+—]L. 73
. (+T)ZJ min L, <+T> (73)
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Calculating pf (7). For o2, from (27), we need to solve

Lk

min D e gy (74)
s.t. Zie[n] pi=1,0<p; <1,Vi.
Let g; = % -7 forall s, and let T = {i|q; > 1}. If T = 0, it is easy to see that p; = pfz (1) = ¢; solve (74).
jen) 1M

Otherwise, it is a little complicated to find the optimal solution. For simplicity, if T' # (J, we choose p; = p;-’z (1) =1 for
i€T,and q; <p; =p? (7) < 1fori ¢ T such that > i) p?” () = 7. By letting p; = p? (7), from (27), we have

1 [l i 1]
2 SR 2
o < n223< = — I

i¢T

2
(E*] = 02(7).

T n

Importance sampling. ~Since by (73) we have that Linax < (14 £) L and o = 02,,(7) are obtained by using the upper

bounds in (71) and (27), and the upper bounds are nonincreasing as p; increases, we get the following property.
Proposition J.1. If p; > p£(7) for all 4, then Liax < (14 1)L, and if p; > p;’2 (1), then 0% < 02 (7).

opt

From Proposition J.1, we can get the following result.

Proposition J.2. For 0 < a < 1, let p;(«) satisfy

1 > pi(a) > min{1,pf(ar) +p¢ (1 -)7)}, Vi,
{ Dicpn Pi(e) =T (75)

If p; = p; (@) where p; () satisfies (75), then we have

»Cmax < (1 + ! ) z’
aT
e 2iefn Il
1 3 i
2 2 _ _ i€[n] 2
0 = Uopt((l OZ)T) (1 —04)7'( n ) .

Proof. First, we claim that p;(c) can be constructed to satisfy (75). Since 0 < p£(a) < land 0 < p‘f((l —a)7) <1, we
know )

0 < min{1,pf(ar) +p7 (1 - a)7)} < 1,
for all 4. Hence, we can first construct ¢; such that

1> g; > min{1,pf (ar) +p7 (1 - )7)},

for all 4. Furthermore, since » -, [, pF(at) = ar and > i) p;’Q (1=a)7) = (1 —a)r, weknow 3,1, 4; < 7. Atlast,
we increase some §; which is less than one to make the sum equal to 7, and hence, by letting p;(a) = §;, p; () satisfies (75).

From (75), we have p; = p;(a) > pF(at). Then by Proposition J.1, we have

1\ —
cmﬁ50+>L.
aT

We also have p;(«) > pg’2 ((1 — a)7), hence, by Proposition J.1, we get

o® <ol ((l—a)r) = ! <Zi€[n] Hhi') .

opt (1-a)r n
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O

From (12) in Theorem 3.1, by letting p; = p;(«) in Proposition J.2, we get an upper bound of the right hand side of (12):

- { 21+ L)L 402,((1 — a)7) }

I eu?

By minimizing this upper bound, we get

T—a—1+ /4t + (1 —a—1)?

o= = ; (76)

and the upper bound becomes
21+ )

QT

"

L

where a = Z(M)2 /(epL). So suboptimal probabilities

p; = min{1, p*(ar) + p‘{z((l —a)7)}, (77)
where « is given in Equation (76).

Partially biased sampling. In practice, we do not know ||h;|| generally. But we can use p~(7) and the uniform probability
- to construct a new probability just as that in Proposition J.2. More specific, we have the following result.

Proposition J.3. Let p; satisfy
{ L2 p 2 min{l,pi(5) +5- 5} Vi, 78)
Zle[n} P =T.

2\ —
Lmax S <1+ > La
T

2 1 1
2< 2 _ ). = hi2~
#e(2-1)-2 % ml

i€[n]

Then we have

and

Proof. The proof for £,,.x is the same as Proposition J.2. For o2, from (27), since p; > T /2n, we have

1 1 1 2n 2 1 1
2 2 2 2
0" = — — =1 hil|© < —= — -1 hill*=(--—-—1]-— h;ll“.

1€[n] i1€[n] i1€[n]
O

This sampling is very nice in the sense that it can maintain £, at least close to L, and meanwhile, can acheive nearly
linear speedup in o2 by increasing 7. We can compare the upper bounds of £, and ¢ for this sampling, 7-nice sampling,
and 7-uniform independent sampling when 1 < 7 = (O(1) in the following table.

From Table 1, compared to 7-nice sampling and 7-uniform independent sampling, the iteration complexity of this 7-partially

biased independent sampling is at most two times larger, but could be about 2% smaller in some extremely case where
Lax ~ nL and 2£/p dominates in (12).
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Table 1. Comparison of the upper bounds of £, and o2 for 7-nice sampling, T-partially biased independent sampling, and 7-uniform
independent sampling.

Lmax 0-2
T-NICE SAMPLING 2. I=1[ + 1(1 - Z=1)L ., 1.2=Th
4 (l_1 1_1yj
T-UNIFORM IS L+ (+ = 2 )Lmax (z —3)h
T-PBA-IS (1+2)L (2-2)h

K. Additional Experiments
K.1. From fixed to decreasing stepsizes: analysis of the switching time

Here we evaluate the choice of the switching moment from a constant to a decreasing step size according to (14) from
Theorem 3.2. We are using synthetic data that was generated in the same way as it had been in the Section 6 for the ridge
regression problem (n = 1000, d = 100). In particular we evaluate 4 different cases: (i) the theoretical moment of regime
switch at moment k as predicted from the Theorem, (ii) early switch at 0.3 x k, (iii) late switch at 0.7 x k and (iv) the
optimal k for switch, where the optimal & is obtained using one-dimensional numerical minimization of (54) as a function
of k*.

10° )
— k=0 — kx0.3
k= 4[K] — kx1.7
S
i
1071 : .
—— Optimal k
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration number
10 :
— k=0 — kx03
107! k= 4[K] — kx 17
2102
(W]
1073
) Optimal &

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration number

Figure 4. The first plot refers to situation when z° is close to z* (for our data ”ro ”2 = on —x* H2 = 1.0). The second one covers the
opposite case (Hro H * x 864.6). Dotted verticals denote the moments of regime switch for the curves of the corresponding colour. The

blue curve refers to constant step size i Notice that in the upper plot optimal and theoretical k are very close

According to Figure 4, when 20 is close to x*, the moment of regime switch does not play a significant role in minimizing
the number of iteration except for a very early switch, which actually also leads to almost the same situation in the long run.
The case when 2V is far from 2* shows that preliminary one-dimensional optimization makes sense and allows to reduce the
error at least during the early iterations.
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n=2500,d=50\A=10/ne=10"% 7 =n/10 n=252,d=14 A=1/n,e=10"°7=n/10
0 0
10 —@— singletons 10 —@— singletons
—%— 7-ind —%— 7-ind
-1
10 —— 431 =7"-ind 10! 4 31 -ind
—4— T-nice —4— T-nice
5 1072 431 = 7* - nice 5 10-2 74 = 7 - nice
i ]
1073
1073
1074
104
107
0 1000 2000 3000 4000 0 200 100 600 800 1000
Epoch number Epoch number

Figure 5. Performance of SGD with several minibatch strategies for ridge regression. On the left: the real data-set bodyfat from LIBSVM.
On the right: synthetic data.

K.2. More on minibatches

Figure 5 reports on the same experiment as that described in Section 6.2 (Figure 2) in the main body of the paper, but on
ridge regression instead of logistic regression, and using different data sets. Our findings are similar, and corroborate the
conclusions made in Section 6.2.

K.3. Stepsize as a function of the minibatch size

In our last experiment we calculate the stepsize v as a function of the minibatch size 7 for 7-nice sampling using equation
(37). Figure 6 depicts three plots, for three synthetic data sets of sizes (n,d) € {(50,5), (100, 10), (500, 50) }. We consider
regularized ridge regression problems with A = 1/n. Note that the stepsize is an increasing function of 7.

Evolution of stepsizes in minibatch size Evolution of stepsizes in minibatch size
n=50d=5A=1/n =103 0.07 n=100,d=10,A=1/n, =103
0.035 * -
0.06 4
0.030 A
0.05 4

0.025 A
> > 0.04 4
@ 0.020 A o
N N
3 * £ 0.03 1
2 0.015 A g
@ @

0.010 A * 0.02 1 *

+
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+*
+ + * * P *
0.000] # # # * * * 0.00 1444 4 bbb bk & & b #F
0 10 20 30 40 0 20 40 60 80 100

minibatch size, T minibatch size, T

Evolution of stepsizes in minibatch size
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Figure 6. Evolution of stepsize with minibatch size 7 for 7 nice sampling.



