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The Problem

x∗ = arg min
x∈Rd

[
f (x) def= 1

n

n∑
i=1

fi(x)
]

(1)

We assume fi are differentiable and f is quasi strongly convex.

Stochastic Reformulation

Stochastic reformulation of (1) is the problem:

min
x∈Rd

Ev∼D

[
fv(x) def= 1

n

n∑
i=1

vifi(x)
]
. (2)

where v = (v1, . . . , vn) ∈ Rn (“sampling vector”) is any random
vector for which

Ev∼D [vi] = 1, ∀i ∈ {1, 2, . . . , n}. (3)

• Equivalence: (2) is equivalent to (1) since Ev∼D [fv] = f . Also
note that Ev∼D [∇fv] = ∇f , which can be seen via

Ev∼D [∇fv]
(2)
= 1

n

n∑
i=1

Ev∼D [vi]∇fi = ∇f. (4)

•We propose to solve (1) by applying SGD to (2):
xk+1 = xk − γk∇fvk(xk) (5)

where vk ∼ D is sampled i.i.d. and γk > 0 is a stepsize.

Example: Arbitrary Sampling
A sampling is a random set-valued mapping S with values being
subsets of {1, . . . , n}. A sampling is defined by assigning
probabilities to all 2n subsets of {1, . . . , n}.

• A sampling is proper if pi def= P [i ∈ S] > 0 for all i ∈ {1, . . . , n}.
• Each proper sampling S gives rise to a sampling vector v:

v = Diag(p−1
1 , . . . , p−1

n )
∑
i∈S

ei,

where ei is the ith standard unit basis vector in Rn. It is easy to
see that E [vi] = 1. Indeed, just notice that vi = p−1

i if i ∈ S and
vi = 0 if i /∈ S.

Main Contributions

•We introduce and study a flexible stochastic reformulation (see
(2)) of the finite-sum problem (1), and study SGD applied to this
reformulation (see (5)). This way we obtain a wide array of
existing and many new variants of SGD for (1).
•We establish linear convergence of SGD applied to the stochastic
reformulation. As a by-product, we establish linear convergence
of SGD under the arbitrary sampling paradigm [2].
•Our results require very weak assumptions. In particular, we do

not assume bounded second moment of the gradients for every x
(only at x∗; see (8)). We rely on the expected smoothness
assumption (7) [3, 4].
•Optimal mini-batch size: We establish formulas for the optimal
dependence of the stepsize on the mini-batch size.
• Learning schedule: We provide a formula for when SGD should
switch from a constant stepsize to a decreasing stepsize (see (9)).
• Interpolated models. We extend the findings in [5]; and show
that optimal mini-batch size is 1 for independent sampling and
sampling with replacement.

Assumptions

•Quasi strong convexity: f is quasi µ–strongly convex [1]:

f (x∗) ≥ f (x) + 〈∇f (x), x∗ − x〉 + µ

2
‖x∗ − x‖2, ∀x (6)

•Expected Smoothness: There exists L ≥ 0 such
Ev∼D

[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ 2L(f (x)− f (x∗)), ∀x. (7)

As L depends on both f and D, we will write (f,D) ∼ ES(L).
•Finite Gradient Noise

σ2 def= Ev∼D
[
‖∇fv(x∗)‖2

]
< ∞. (8)

Assumptions (7) and (8) include also some non-convex functions!

Linear Convergence with Fixed Step Size

Assumptions (7) and (8) lead to a bound on the 2nd moment of the
stochastic gradient:

Lemma: 2nd moment

If (f,D) ∼ ES(L) and σ < +∞ (i.e., if (7) and (8) hold), then

Ev∼D
[
‖∇fv(x)‖2

]
≤ 4L(f (x)− f (x∗)) + 2σ2.

The above lemma can now be used to establish a linear convergence
result:

Theorem 1

Choose γk = γ ∈ (0, 1
2L], then SGD (5) satisfies:

E‖xk − x∗‖2 ≤ (1− γµ)k ‖x0 − x∗‖2 + 2γσ2

µ
.

In particular, with stepsize γ = min
{

1
2L,

εµ
4σ2

}
, we have

k ≥ max
{

2L
µ
,

4σ2

εµ2

}
log
(

2‖x0 − x∗‖2

ε

)
⇒ E‖xk − x∗‖2 ≤ ε.

Proof. Let rk def= xk − x∗ and gk def= Ek
[
‖∇fvk(xk)‖2

]
.

‖rk+1‖2 (5)
= ‖xk − x∗ − γ∇fvk(xk)‖2

= ‖rk‖2 − 2γ〈rk,∇fvk(xk)〉 + γ2‖∇fvk(xk)‖2

Taking expectation conditioned on xk we obtain:

Ek‖rk+1‖2 (4)= ‖rk‖2 − 2γ〈rk,∇f (xk)〉 + γ2gk

(6)
≤ (1− γµ)‖rk‖2 − 2γ[f (xk)− f (x∗)] + γ2gk.

Taking expectations again and using the lemma :
E‖rk+1‖2 ≤ (1− γµ)E‖rk‖2 + 2γ2σ2

+ 2γ(2γL − 1)E
[
f (xk)− f (x∗)

]
≤ (1− γµ)E‖rk‖2 + 2γ2σ2,

since 2γL ≤ 1 and γ ≤ 1
2L. Recursively applying the above and

summing up the resulting geometric series gives

E‖rk‖2 ≤ (1− γµ)k ‖r0‖2 + 2
k−1∑
j=0

(1− γµ)j γ2σ2

≤ (1− γµ)k ‖r0‖2 + 2γσ2

µ
.

Example: Mini-batch SGD Without
Replacement (τ-nice sampling)

• Consider sampling S which picks from all subsets of {1, . . . , n} of
cardinality τ , uniformly at random. Then pi = τ

n for all i and the
sampling vector v is given by:

vi =

n
τ i ∈ S
0 otherwise.

• SGD (5) then takes the form

xk+1 = xk − γkn
τ

∑
i∈Sk
∇fi(xk)

• If each fi is Li–smooth and convex, Lmax
def= maxiLi, and f is

L-smooth, then (f,D) ∼ ES(L), where

L ≤ L(τ ) def= n(τ − 1)
τ (n− 1)

L + n− τ
τ (n− 1)

Lmax

• Let h∗ def= 1
n

∑
i ‖∇fi(x∗)‖2. Then the gradient noise is

σ2 = σ2(τ ) def= h∗

τ
· n− τ
n− 1

.

• Applying Theorem 1,

k ≥ 2(n− τ )
τ (n− 1)

max
{
n(τ − 1)
n− τ

L

µ
+ Lmax

µ
,

2h∗

εµ2

}
log
(

2‖x0 − x∗‖2

ε

)
,

implies E‖xk − x∗‖2 ≤ ε.

• Theoretically optimal mini-batch size is obtained by minimizing
the above bound on k in τ :

τ ∗ = n
L− Lmax + 2

εµ · h
∗

nL− Lmax + 2
εµ · h∗

.

A sample computation is shown in the plot below:
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Sublinear Convergence with Constant and
Later Decreasing Step Size

In the next theorem we propose a stepsize switching strategy: first
use a constant stepsize, and at some point switch toO(1/k) stepsize.
This leads to O(1/k) rate.

Theorem 2

Let K def= L/µ and

γk =


1

2L
for k ≤ 4dKe

2k + 1
(k + 1)2µ

for k > 4dKe.
(9)

If k ≥ 4dKe, then SGD iterates given by (5) satisfy:

E‖xk − x∗‖2 ≤ σ2

µ2
8
k

+ 16dKe2

e2k2 ‖x
0 − x∗‖2. (10)

Learning Schedule
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Constant vs decreasing step size regimes of SGD with λ = 1/n.
Top: Ridge regression problem with abalone. Bottom: Logistic
regression with a1a. Data from LIBSVM.

PCA (Sum-of-non-convex functions)
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Top: Comparison between constant and decreasing step size regimes
of SGD for PCA. Bottom: Comparison of different sampling strate-
gies of SGD for PCA.

References

[1] Ion Necoara, Yurii Nesterov, and Francois Glineur.
Linear convergence of first order methods for non-strongly convex optimization.
Mathematical Programming, pages 1–39, 2018.

[2] Peter Richtárik and Martin Takáč.
On optimal probabilities in stochastic coordinate descent methods.
Optimization Letters, 10(6):1233–1243, 2016.

[3] Robert M. Gower, Peter Richtárik, and Francis Bach.
Stochastic quasi-gradient methods: Variance reduction via Jacobian sketching.
arxiv:1805.02632, 2018.

[4] Nidham Gazagnadou, Robert Mansel Gower, and Joseph Salmon.
Optimal mini-batch and step sizes for saga.
In 36th International Conference on Machine Learning, 2019.

[5] Siyuan Ma, Raef Bassily, and Mikhail Belkin.
The power of interpolation: Understanding the effectiveness of SGD in modern
over-parametrized learning.
In 35th International Conference on Machine Learning, 2018.


