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The Problem

r* = arg min =e Zfz (1)

rERA

We assume f; are differentiable and f is quasi strongly convex.

Stochastic Reformulation

Stochastic reformulation of (1) is the problem:

min Eyop | fuo(2) € =3 vifilz)] . (2)

d
el i=1 _

,v,) € R (“sampling vector”) is any random

where v = (vy, .. .
vector for which

E,wplv;] =1, Vie{l,2,...,n}. (3)

o Equivalence: (2) is equivalent to (1) since E,.p|f,] = f. Also
note that E,.p |V f,] =V f which can be seen via

UND va : 1ZEUND U; vfz vf (4>

e We propose to solve (1) by applymg SGD to (2):
o =2t — PV f(a®) (5)

where v" ~ D is sampled i.i.d. and v* > 0 is a stepsize.

Example: Arbitrary Sampling

A sampling is a random set-valued mapping S with values being
subsets of {1,...,n}. A sampling is defined by assigning
probabilities to all 2" subsets of {1,...,n}.

e A sampling is proper if p; d:efIP’[i €S| >0forallze{l,... n}

e Each proper sampling S gives rise to a sampling vector v:

7pn Zelv

1€S
where e; is the 7th standard unit basis vector in R". |t is easy to
see that IE [v;] = 1. Indeed, just notice that v; = p; * if i € S and

v=Diagp1 .

Main Contributions

e We introduce and study a flexible stochastic reformulation (see
(2)) of the finite-sum problem (1), and study SGD applied to this
reformulation (see (5)). This way we obtain a wide array of
existing and many new variants of SGD for (1).

e We establish linear convergence of SGD applied to the stochastic
reformulation. As a by-product, we establish linear convergence
of SGD under the arbitrary sampling paradigm [2].

e Our results require very weak assumptions. In particular, we do
not assume bounded second moment of the gradients for every x
(only at x*; see (8)). We rely on the expected smoothness
assumption (7) |3, 4].

e Optimal mini-batch size: We establish formulas for the optimal
dependence of the stepsize on the mini-batch size.

e Learning schedule: We provide a formula for when SGD should
switch from a constant stepsize to a decreasing stepsize (see (9)).

e [nterpolated models. We extend the findings in [5]; and show
that optimal mini-batch size is 1 for independent sampling and
sampling with replacement.
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Assumptions

» Quasi strong convexity: f is quasi p—strongly convex [1]:

fla) 2 f(@) + (Vf(a).a" =) + Slla* x|, Vo (6)
e Expected Smoothness: There exists £ > 0 such
Eop [[IVfu(@) = VE(@)?] < 2L(f(x) — f(z"), Vo. (1)
As L depends on both f and D, we will write (f, D) ~ ES(L).

e Finite Gradient Noise

9 det
o = v~D [

Vi) < oo ®

Assumptions (7) and (8) include also some non-convex functions!

Linear Convergence with Fixed Step Size

Assumptions (7) and (8) lead to a bound on the 2nd moment of the
stochastic gradient:

Lemma: 2nd moment

It (f,D) ~ ES(L)and o0 < 400 (i.e., if (7) and (8) hold), then
Eop IV f(@)I°] < 4L(f(x) — f(2")) + 20

The above lemma can now be used to establish a linear convergence
result:

Theorem 1

Choose v* = v € (0, 5], then SGD (5) satisfies:
2v0?

Efla* — 2> < (1 = yp)" [|2” — 2*|]* + .

In particular, with stepsize v = min {210 4652}, we have

oL 4 2 9 0 .x]|]|2
k> max{ , 02}10g< ="~ =7 ) = E|lz" — 2*||* < e.
woEep €

L def

Proof. Let r* & ¥ — 2* and ¢* < E, [HVfU (x k)||2} .

5 k
12 Dk — v fah))?
PR = 2905 () A2 ()

k

Taking expectation conditioned on x" we obtain:

4
Bl 12 2 k2 — 290k, ¥ F(ah)) + 42"

(6)
< (L= y)|Ir"I* = 29[f(=*) = f(2)] +~v°¢".

Taking expectations again and using the lemma :
Ellr** < (1 = yu)E[lr"]]” + 2v%07
+2y(27L — DE [ f(a*) — f(a")
< (1= wE[r*|* + 27%0°

since 2vL < 1 and v < i Recursively applying the above and
summing up the resulting geometric series gives

k—1
Eflrf)* < (=) [PIP+ 23 (1= yp) 770
1=0
2 2
k o
< (1 =) |7 + =
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Example: Mini-batch SGD Without
Replacement (7-nice sampling)

o Consider sampling S which picks from all subsets of {1,...,n} of

cardinality 7, uniformly at random. Then p; = - for all 7 and the
sampling vector v is given by:

4, e S
UV; = T _
0 otherwise.

e SGD (5) then takes the form

def
o If each f; is Li—smooth and convex, L.« = max; L;, and f is

L-smooth, then (f,D) ~ ES(L), where
def (7 — 1) n—T

L Liax
T(n — 1) i T(n —1)

olet h* d:ef%Zi |V f;(z*)||*. Then the gradient noise is

h* n—
o = o°(1) def B T7

L< L(r) &

T n—1
e Applying Theorem 1,

n—r1 [ o ep? €

implies E||z" — 2*|]* < e.

T(n —1)

e Theoretically optimal mini-batch size is obtained by minimizing
the above bound on £ in 7:

L_Lmax—|_i'h*
n .
nL — Lipg + 2 - b*

A sample computation is shown in the plot below:

T =

1.2x10° F

1.0x10° F

8.0x10%

6.0x10%

complexity

4.0x10%

2.0x10°F -~ - - total complexity

(I) 2I5 5I0 7I5 1(I)0
mini-batch size

Sublinear Convergence with Constant and
Later Decreasing Step Size

In the next theorem we propose a stepsize switching strategy: first
use a constant stepsize, and at some point switch to O(1/k) stepsize.

This leads to O(1/k) rate.

Theorem 2

Let IC = dd

L/ 1 and
(1
2L
2k 4+ 1
((k+1)7p
If £ > 4|K], then SGD iterates given by (5) satisfy:

16[ K]

for k <A4[K]

for k> 4[K].

|2 — "

E E *2 e
|z* — 2*||” < YT

Egor Shulgin®*  Peter Richtarik?>*

2n — — L Ly 2hF Wz — z*||?
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Learning Schedule
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Constant vs decreasing step size regimes of SGD with A = 1/n.
Top: Ridge regression problem with abalone. Bottom: Logistic
regression with ala. Data from LIBSVM.

PCA (Sum-of-non-convex functions)

n = 1000, d = 100
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+ Decreasing step size
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Top: Comparison between constant and decreasing step size regimes

of SGD for PCA. Bottom: Comparison of different sampling strate-
gies of SGD for PCA.
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