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Abstract

We fix a fundamental issue in the stochas-
tic extragradient method by providing a new
sampling strategy that is motivated by ap-
proximating implicit updates. Since the
existing stochastic extragradient algorithm,
called Mirror-Prox, of (Juditsky et al., 2011)
diverges on a simple bilinear problem when
the domain is not bounded, we prove guar-
antees for solving variational inequality that
go beyond existing settings. Furthermore, we
illustrate numerically that the proposed vari-
ant converges faster than many other meth-
ods on bilinear saddle-point problems. We
also discuss how extragradient can be applied
to training Generative Adversarial Networks
(GANs) and how it compares to other meth-
ods. Our experiments on GANs demonstrate
that the introduced approach may make the
training faster in terms of data passes, while
its higher iteration complexity makes the ad-
vantage smaller.

1 Introduction

Algorithmic machine learning has for a long time been
centered around minimization of a single function. A
lot of works are still targeting solving empirical risk
minimization and new results touch upon methods as
old as gradient descent itself.

However, as the gap between lower bounds and avail-
able minimization algorithms is shrinking, the focus
is shifting towards more challenging problems such as
variational inequality, where a significant number of
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long-unresolved questions is remaining. This prob-
lem has a rich history with applications in economics
and computer science, but the arising applications pro-
vide new desiderata on algorithm properties. In par-
ticular, due to high dimensionality and large scale of
the corresponding problems, we shall consider the im-
pact of having a stochastic objective. In particular,
recently invented generative adversarial neural net-
works (Goodfellow et al., 2014) are often trained us-
ing schemes that resemble primal-dual and variational
inequality methods, which we shall discuss in detail
later.

Variational inequality can be seen as an extension of
the necessary first-order optimality condition for mini-
mization problem, which is also sufficient in the convex
case. When the operator involved in its formulation is
monotone and is equal to the gradient of a function,
this corresponds to convex minimization.

Formally, the problem that we consider is that of find-
ing a point x∗ satisfying

g(x)−g(x∗)+〈F (x∗), x− x∗〉 ≥ 0, for all x ∈ Rd, (1)

where g : Rd → R ∪ {+∞} is a proper lower semi-
continuous convex function and F : Rd → Rd is a
monotone operator. Some application of interest are
not covered by the monotonicity framework, but, un-
fortunately, little is known about variational inequality
and even saddle point problems when monotonicity is
missing. Thus, we stick to this assumption and rather
try to model oscillations arising in some problems by
considering particularly unstable (Gidel et al., 2019b;
Chavdarova et al., 2019) bilinear minimax problems.

Of particular interest to us is the situation where F (x)
is the expectation with respect to random variable ξ
of the random operator F (x; ξ). This formulation has
two aspects. First, one can model data distribution,
especially when a large dataset is available and the
problem is that of minimizing empirical loss. Second, ξ
can be a random variable sampled by one of the GAN
networks, called generator. In any case, throughout
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the work we assume that we sample unbiased estimates
F (·; ξ) of F (·) such that EξF (·; ξ) = F (·).

Let us explicitly mention that a special case of (1) is
constrained saddle point optimization,

min
x∈X

max
y∈Y

f(x, y),

where X and Y are some convex sets and f is a
smooth function. While this example looks deceptively
simple, simultaneous gradient descent-ascent is known
to diverge on this problem (Goodfellow, 2016) even
when f is convex-concave. In particular, the objec-
tive f(x, y) = x>y leads to geometrical divergence for
any nontrivial initialization (Daskalakis et al., 2018).
See (Mishchenko and Richtárik, 2019) for more appli-
cations of the convex-concave saddle point problem in
machine learning and (Gidel et al., 2019a) for extra
discussion on variational inequality and its relation to
GANs.

1.1 Related work

The extragradient method was first proposed by (Kor-
pelevich, 1977). Since then there have been developed
a number of its extensions, most famous of which is
the Mirror-Prox method (Nemirovski, 2004) that uses
mirror descent update. At each iteration, the standard
extragradient method is trying to approximate the im-
plicit update, which is known to be much more stable.
Assuming the operator is Lipschitz, it is enough to
compute the operator twice to do the approximation
accurately enough. We base our intuition upon this
property and we shall discuss it in detail later in the
paper.

While extragradient uses future information, i.e., in-
formation from one gradient step ahead, past informa-
tion can also help to stabilize convergence. In particu-
lar, Optimistic mirror descent (OMD), first proposed
by (Rakhlin and Sridharan, 2013) for convex-concave
zero-sum games, has been analyzed in a number of
works (Mokhtari et al., 2019; Daskalakis and Panageas,
2019; Gidel et al., 2019a) and it was applied to GAN
training in (Daskalakis et al., 2018). The rates that we
prove in this work for stochastic extragradient match
the best known results for OMD, but are given un-
der more general assumptions. Moreover, the method
of (Gidel et al., 2019a) diverges on bilinear problems.

Many other techniques also allow to improve stabil-
ity and achieve convergence for monotone operators in
the particular case of saddle point problems. For in-
stance, alternating gradient descent-ascent does not,
in general, converge to a solution (Gidel et al., 2019b),
the negative momentum trick proposed in (Gidel et al.,
2019b) can fix this.

We note that our work is not the first to consider a
variant of stochastic extragradient. A stochastic ver-
sion of the Mirror-Prox method (Nemirovski, 2004)
was analyzed in (Juditsky et al., 2011) under pretty re-
strictive assumptions. While deterministic extragradi-
ent approximates implicit update, the authors of (Ju-
ditsky et al., 2011) chose to sample two different in-
stances of the stochastic operator, which leads to a
poor approximation of stochastic implicit update un-
less the variance is tiny. It was observed in (Chav-
darova et al., 2019) that this approach leads to terri-
ble practical performance, dubious convergence guar-
antees and divergence on bilinear problems. All later
variants of stochastic extragradient, that we are aware
of, consider the same update model.

Surprisingly, a variant of extragradient was also redis-
covered by practitioners (Metz et al., 2016) as a way
to stabilize training of GANs. The main difference of
the method of (Metz et al., 2016) to what we consider
is in applying extra steps only on one of two neural
networks. In addition, (Metz et al., 2016) proposed
to use more than one extra step and claim that in on
specific problems 5 steps is a good trade-off between
results quality and computation.

(Chavdarova et al., 2019) showed that the methods
of (Juditsky et al., 2011) and (Gidel et al., 2019a) di-
verge on stochastic bilinear saddle point problem. As
a fix, they proposed a stochastic extragradient method
with variance reduction (SVRE), which achieves a lin-
ear rate O((n+ L

µ ) log 1
ε ). However, their theory works

only for saddle point problems and it does not cover
the case without strong monotonicity, so it is less gen-
eral than ours.

1.2 Theoretical background

Here we provide several technical assumptions that are
standard for variational inequality.

Assumption 1. Operator F : Rd → Rd is monotone,
that is 〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ Rd. In
stochastic case, we assume that F (x; ξ) is monotone
almost surely.

The monotonicity assumption is an extension of the
notion of convexity and is quite standard in the
literature. There are several versions of pseudo-
monotonicity, but without it the variational inequality
problem becomes extremely hard to solve.

Assumption 2. Operator F (·; ξ) is almost-surely L-
Lipschitz, that is for all x, y ∈ Rd

‖F (x; ξ)− F (y; ξ)‖ ≤ L ‖x− y‖ . (2)

In addition to operator monotonicity, we ask for con-
vexity and some regularity properties of g(·) as given
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Algorithm 1 Same-Sample Stochastic Extragradient
Method for Variational Inequality.

1: Parameters: x0 ∈ K, stepsize η > 0
2: for t = 0, 1, 2, . . . do
3: Sample ξt

4: yt = proxηg (xt − ηF (xt; ξt))
5: xt+1 = proxηg (xt − ηF (yt; ξt))
6: end for

Algorithm 2 The extragradient method for min-max
problems.

Require: Stepsizes η1, η2, initial vectors x0, y0

1: for t = 0, 1, . . . do
2: ut = xt − η1∇xf(xt, yt)
3: vt = yt + η1∇yf(xt, yt)
4: xt+1 = xt − η2∇xf(ut, vt)
5: yt+1 = yt + η2∇yf(ut, vt)
6: end for

below.

Assumption 3. Function g : Rd → R∪{+∞} is lower
semi-continuous and µ-strongly convex for µ ≥ 0, i.e.,
for all x, y ∈ Rd and any h ∈ ∂g(y)

g(x)− g(y)− 〈h, x− y〉 ≥ µ

2
‖x− y‖2.

If µ = 0, then g is just convex.

Even in simple minimization problems, the classical
theoretical analysis of stochastic methods ask for uni-
formly bounded variance, an assumption rarely sat-
isfied in practice. Recent developments of the theory
for SGD have removed this assumption, but we are not
aware of any results in more general settings. Thus,
it is one of our contributions is to relax the uniform
variance bound the one below.

Assumption 4. In the strongly convex case, we as-
sume that F has bounded variance at the optimum,
i.e.,

E‖F (x∗; ξ)− F (x∗)‖2 ≤ σ2.

Depending on the assumptions, we will either work
with the variance at the optimum or with a merit func-
tion, which involves the variance of a bounded set.

2 Theory

It is known that implicit updates are more stable
when solving variational inequality and sometimes it
is argued that the main goal of algorithmic design is
to approximate those (Mokhtari et al., 2019). From
that perspective, the current stochastic extragradient,

which was suggested in (Juditsky et al., 2011), does
not make much sense. Since it uses two independent
samples, it will rarely approximate the implicit update,
so it is rather not surprisingly that it fails on bilinear
problems.

To better explain this phenomenon, below we show
that extragradient efficiently approximates implicit
update.

Theorem 1. Let F be an L-Lipschitz operator and de-

fine y
def
= proxηg (x− ηF (x)), z

def
= proxηg (x− ηF (y)),

w
def
= proxηg (x− ηF (w)), where η > 0 is any stepsize.

Then,

‖w − z‖ ≤ η2L2‖w − x‖.

The right-hand side in Theorem 1 serves as a measure
of stationarity and decreases as x gets closer to the
problem’s solution. The essential part of the bound
is that the error is of order O(η2) rather than O(η).
This allows the approximation to be better than sim-
ple gradient update making it possible for the method
to solve variational inequality. One can also mention
that having extra factor of ηL is beneficial only when
η < 1/L, which provides a good intuition on why ex-
tragradient uses smaller stepsizes than gradient.

However, when the stochastic update is used, this re-
sult is not applicable directly. If two different samples
of the operator are used, F (·; ξt) and F (·; ξt+1/2), as is
done in stochastic Mirror-Prox (Juditsky et al., 2011),
then the update does not seem to approximate im-
plicit update of any operator. This is why we propose
in this work to use the same sample, ξt, when comput-
ing yt and xt+1, see Algorithm 1. Equipped with our
update, we are always approximating the implicit up-
date of stochastic operator F (·; ξt) and our theoretical
results suggest that this is the right approach.

2.1 Stochastic variational inequality

Our first goal is to show that our stochastic version of
the extragradient method converges for strongly mono-
tone variational inequality. The next theorem provides
the rate that we obtained.

Theorem 2. Assume that g is a µ-strongly convex
function, operator F (·; ξ) is almost surely monotone
and L-Lipschitz, and that its variance at the optimum
x∗ is bounded by constant, E‖F (x∗; ξ)−F (x∗)‖2 ≤ σ2.
Then, for any η ≤ 1/(2L)

E‖xt − x∗‖2 ≤ (1− 2ηµ/3)
t ‖x0 − x∗‖2 + 3ησ2

/µ.

In the case where at the optimum the noise is zero, we
recover a slight generalization of linear convergence of
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extragradient (Tseng, 1995). This is also similar to
the rate proved for optimistic mirror descent in (Gidel
et al., 2019a), however we do not ask for uniform
bounds on the variance. Therefore, we believe that
this result is significantly more general.

Theorem 3. Let g be a convex function, F (·; ξ) be
monotone and L-Lipschitz almost surely. Then, the
iterates of Algorithm 1 with stepsize η = O(1/(

√
tL))

satisfy for any set X and x ∈ X

E
[
g(x̂t)− g(x) +

〈
F (x), x̂t − x

〉]
≤ 1√

tL
sup
x∈X

{
L2

2
‖x0 − x‖2 + σ2

x

}
.

where x̂t = 1
t

∑t
k=0 y

k and σ2
x

def
= E‖F (x)− F (x; ξ)‖2,

i.e., σ2
x is the variance of F at point x.

The left-hand side in the bound above is a merit func-
tion that has been used in variational inequality lit-
erature (Nesterov, 2007). This result is more general
than the one obtained in (Gidel et al., 2019a), where
the authors require for the same rate bounded variance
and even E‖F (x; ξ)‖2 ≤M <∞ uniformly over x.

In fact, the claim that we prove in the appendix is a bit
more general than the one presented in the previous
theorem. If we know that σx is sufficiently small on a
bounded set X , then we can get a O(1/t + supx∈X σx)
rate, i.e., fast convergence to a neighborhood.

2.2 Adversarial bilinear problems

The work (Gidel et al., 2019b) argues that a good il-
lustration of method’s stability can be obtained when
considering minimax bilinear problems, which is given
by

min
x

max
y

f(x, y) = x>By + a>x+ b>y,

where B is a full rank square matrix. One can show
that if there exists a Nash equilibrium point, then
f(x, y) = (x − x∗)>B(y − y∗) + const for some pair
(x∗, y∗)1. This problem is particularly interesting be-
cause simple gradient descent-ascent diverges geomet-
rically when solving it,

Theorem 4. Let f be bilinear with a full-rank matrix
B and apply Algorithm 2 to it. Choose any η1 and η2
such that η2 < 1/σmax(B) and η1η2 < 2/σmax(B)2, then
the rate is

‖xt − x∗‖2 + ‖yt − y∗‖2 ≤ ρ2t(‖x0 − x∗‖2 + ‖y0 − y∗‖2),

1If a does not belong to the column space of B or b does
not belong to the column space of B>, the unconstrained
minimax problem admits no equilibrium. Otherwise, if we
introduce ã, b̃ such that a = −By∗ and b = −B>x∗, we
have (x−x∗)>B(y−y∗) = x>By+a>x+b>y+(x∗)>By∗.

where ρ
def
= max

{
(1− η1η2σmax(B)2)2 + η22σmax(B)2 ,

(1− η1η2σmin(B)2)2 + η22σmin(B)2
}

.

The conditions for η1 and η2 in Theorem 4 are neces-
sary, but not sufficient. To guarantee convergence, one
needs to have ρ < 1 and below we provide two such
examples.

Corollary 1. Under the same assumption as in The-
orem 4, consider two choices of stepsizes:

1. if η1 = η2 = 1/(
√
2σmax(B)) we get

‖xt − x∗‖2 + ‖yt − y∗‖2

≤
(

1− σmin(B)2

6σmax(B)2

)2t

(‖x0 − x∗‖2 + ‖y0 − y∗‖2),

2. if σmin(B) > 0, and η1 = κ/(
√
2σmax(B)2), η2 =

1/(
√
2κσmax(B)2) with κ

def
= σ2

min(B)/σ2
max(B), then the

rate is

‖xt − x∗‖2 + ‖yt − y∗‖2

≤
(

1− σmin(B)2

4σmax(B)2

)2t

(‖x0 − x∗‖2 + ‖y0 − y∗‖2).

If we denote κ
def
=

σ2
min(B)

σ2
max(B)

as in (Mokhtari et al., 2019),

then the complexity in both cases is O(κ log 1
ε ). How-

ever, we provide this result for potentially different
stepsizes to obtain new insights about how they should
be chosen. One can see, in particular, that choosing a
huge η1 is possible if η2 is chosen small, but not vice
versa.

3 Nonconvex extragradient

Since the objective of neural networks is not convex, it
is desirable to have a guarantee for convergence that
would not assume operator monotonicity. Alas, there
is almost no theory even for nonconvex minimax prob-
lems and full gradient updates as even the notion of
stationarity becomes tricky. Therefore, in this section
we only discuss the method performance when mini-
mizing loss function.

Formally, the problem that we consider here is

min
x

Eξf(x; ξ), (3)

where f is a smooth bounded from below and poten-
tially nonconvex function. To show convergence, we
need the following standard assumption.

Assumption 5. There exists a constant σ > 0 such
that for all x it holds

E‖∇f(x; ξ)−∇f(x)‖2 ≤ σ2.
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Figure 1: Left: comparison of using independent samples and averaging as suggested by (Juditsky et al., 2011)
and the same sample as proposed in this work. The problem here is the sum of randomly sampled matrices
minx maxy

∑n
i=1 x

>Biy. Since at point (x∗, y∗) the noise is equal 0, the convergence of Algorithm 1 is linear
unlike the slow rates of (Juditsky et al., 2011) and (Gidel et al., 2019a). ’EGm’ is the version with negative
momentum (Gidel et al., 2019b) equal β = −0.3. Right: bilinear example with linear terms.

Figure 2: Top line: extragradient with the same sample. Middle line: gradient descent-ascent. Bottom line:
extragradient with different samples. Since the same seed was used for all methods, the former two methods
performed extremely similarly, although when zooming it should be clear that their results are slightly different.

Then, we are able to show that the method converges
to a local minimum.

Theorem 5. Choose η ≤ 1
4L and apply extragradient

to (3). Then, its iterates satisfy

E‖∇f(x̂t)‖2 ≤ 5

ηt
(f(x0)− f∗) + 11ηLσ2,

where x̂t is sampled uniformly from {x0, . . . , xt−1} and
f∗ = infx f(x).

Corollary 2. If we choose η = Θ (1/(L
√
t)), then the

rate is O
(
(f(x0)−f∗)/

√
t + σ2

/
√
t
)
, which is the same as

the rate of SGD under our assumptions.

The statement of the theorem almost coincides with
that of SGD, see for instance (Ghadimi and Lan, 2013).
This suggests that extragradient in most cases should
not be seen as an alternative to SGD. We also provide a
simple experiment with training Resnet-18 (He et al.,
2016) on Cifar10 (Krizhevsky and Hinton, 2009) in
Appendix B.2, which gives a similar message.

4 Experiments

4.1 Bilinear minimax

In this experiment, we generated a matrix with en-
tries from standard normal distribution and dimen-
sions 200. Since we did not observe much difference
when changing the matrix size, we provide only one
run in Figure 1. The results are very encouraging and
show the superiority of the proposed approach on this
problem. We provide two cases, with zero noise at the
optimum and non-zero noise. In the latter case, only
our method did not diverge.

When the noise at the optimum is zero, this is mostly
like deterministic case for our method, but for the rest
it is a difficult problem. On the other hand, when
the noise is not equal 0 at the solution, the ergodic
convergence of our method is faster, just as predicted
by Theorem 3.

4.2 Generating mixture of Gaussians

Here we compare gradient descent-ascent as well as
Mirror-Prox to our method on the task of learning mix-
ture of 4 Gaussians. We provide the evolution of the
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Figure 3: The columns differ in step sizes for generator and discriminator: 1) (10−4, 10−4), 2) (5 ·10−5, 5 ·10−5),
3) (10−4, 5 · 10−5). In the top row, we show the generator loss and in the bottom row that of discriminator.

process in Figure 2, although we note that the process
is rather unstable and all results should be taken with
a grain of salt.

To our surprise, negative momentum was rarely helpful
and even positive momentum sometimes was giving
significant improvement. We suspect that this is due
to the different roles of generator and discriminator,
but leave further exploration for future work.

The details of the experiment are as follows. For gen-
erator we use neural net with 2 hidden layers of size 16
and tanh activation function and output layer with size
2 and no activation function, which represents coordi-
nates in 2D. Generator uses standard Gaussian vector
of size 16 as an input. For discriminator we use neu-
ral net with input layer of size 2, which takes a point
from 2D, 2 hidden layers of size 16 and tanh activa-
tion function and output layer with size 1 and sigmoid
activation function, which represents probability of in-
put point to be sampled from data distribution. We
choose the same stepsize 5·10−3 for all methods, which
is close to maximal possible stepsize under which the
methods rarely diverge.

4.3 Comparison of Adam and ExtraAdam

Unfortunately, pure extragradient did not perform ex-
tremely well on big datasets, so for the Fashion MNIST
and Celeba experiments we used adaptive stepsizes as
in Adam (Kingma and Ba, 2014).

In the first set of experiments, we compared the perfor-

mance of ExtraAdam (Gidel et al., 2019a) and Adam
in a Conditional GAN (Mirza and Osindero, 2014)
setup on Fashion MNIST (Xiao et al., 2017) dataset.
The generator and discriminator were simple feedfor-
ward networks (detailed architectures description in
Table 1). Optimizers were run with mini-batch size of
64 samples, no weight decay and β1 = 0.5, β2 = 0.999.
One iteration of ExtraAdam was counted as two due to
a double gradient calculation. The results (mean and
variance) are depicted in Figure 3 and were obtained
using 3 runs with different seeds. One can see that ex-
tragradient is slower because of the need to compute
twice more gradients.

We suspect that Adam is faster partially due to that
the problem’s structure is something more specific
than just a variational inequality. One validation of
this guess is that in (Gidel et al., 2019b), the networks
were trained with negative momentum only on dis-
criminator, while generator was trained with constant
momentum +0.5. Another reason we make this conjec-
ture is that in (Metz et al., 2016) there was proposed
a method that can be seen as a variant of extragradi-
ent, in which parameters of only one network requires
extra steps.

In the second experiment, following (Chavdarova
et al., 2019), we trained Self Attention GAN (Zhang
et al., 2018). We note that the loss was generally an
ambiguous metric of method comparison, so we pro-
vide the Inception score (Salimans et al., 2016)1 in

1We used implementation from this GitHub repository.

https://github.com/sbarratt/inception-score-pytorch
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Generator
Input : z ∈ R100 ∼ N (0, I)

Embedding layer for the label
Linear (110 → 256)

LeakyReLU (negative slope: 0.2)
Linear (256 → 512)

LeakyReLU (negative slope: 0.2)
Linear (512 → 1024)

LeakyReLU (negative slope: 0.2)
Linear (1024 → 784)

Tanh(·)

Discriminator
Input : x ∈ R1×28×28

Embedding layer for the label
Linear (794 → 1024)

LeakyReLU (negative slope: 0.2)
Dropout (p=0.3)

Linear (1024 → 512)
LeakyReLU (negative slope: 0.2)

Dropout (p=0.3)
Linear (512 → 256)

LeakyReLU (negative slope: 0.2)
Dropout (p=0.3)

Linear (1024 → 784)
Sigmoid(·)

Table 1: Architectures used for our experiments on Fashion MNIST.

Figure 4 as performance measure for image synthe-
sis. Besides, samples generated after training for two
epochs are provided in Figure 9 in the Appendix.

The work (Gidel et al., 2019b) suggests using negative
momentum to improve game dynamics and achieve
faster convergence of the iterates. We consider us-
ing two types of momentum together: β1 in the first
step and β2 in the second, i.e., we use yt = xt −
η1F (xt; ξt)+β1(xt−xt−1) and xt+1 = xt−η2F (yt; ξt)+
β2(xt−xt−1). Detailed investigation on bilinear prob-
lems shows that β1 can be chosen to be positive and β2
should rather be negative. Intuitively, positive β1 al-
lows the method to look further ahead, while negative
β2 compensates for inaccuracy in the approximation
of implicit update. In Appendix A.1, we discuss it in
more details.

The results (mean and variance) are depicted in Fig-
ure 3 and were obtained using 3 runs with different
seeds.
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ExtraAdam
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Figure 4: Inception score (mean and variance obtained
by 5 runs) computed every 50 iterations during the
training process on CelebA dataset for 2 epochs.

4.4 Discussion

The bilinear example is very clear and the results that
we obtained showed enough stability. However, the
message from training GANs is very vague due to their
well-known instability. We did not observe a signif-
icant impact of negative momentum on convergence
speed or stability, but at the same time we mentioned
that setting first momentum to 0 in Adam is impor-
tant for the extra update to have impact. We believe
that the bilinear problem in this situation is the best
way to make conclusion, but we still aim to obtain new
methods for GANs in future.

It is also worth mentioning that the actual loss func-
tions used in GANs are typically nonsmooth due to
the choice of loss functions. For instance, the popular
WGAN formulation (Arjovsky et al., 2017) includes
hinge loss. On top of that, neural networks them-
selves have nonsmooth activations such as ReLU and
its variants. Therefore, it is an interesting direction to
understand what happens when the assumptions typ-
ical to variational inequalities are violated.
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(a) η1 = η2, β2 = 0, β = β1 is the x-axis, ησi is the
y-axis. The optimal value of β1 depends on ησi and
only for small values is significantly bigger 0. The
dark area is where the method diverges.

(b) η1 = η2, β1 = 0, β = −β2 (negative momentum)
is the x-axis, ησi is the y-axis. The optimal value
of β2 is always very close to −0.3. The dark area is
where the method diverges.

Figure 5: Values of the spectral radius of the extragradient momentum matrix (5) for bilinear problems for
different values of ησ and β. The heat values is the multiplicative speed up from using β > 0 compared to β = 0,

which we define as the ratio ρ(T(ησ,β))
ρ(T(ησ,0)) , where ρ(A) is the spectral radius of a matrix A for any A and T(ησ, β)

is the value of matrix in the update under given ησ and β, see (5) in Appendix A.1.
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Appendix: “Revisiting Stochastic Extragradient”

A Proofs

Proof of Theorem 1
We prove a more general version of the claim made in the main part, in particular we provide O(ηk) bound for
extragraident with k steps. The precise claim is given below.

Theorem 6. Let F be an L-Lipschitz operator and define recursively y0 = x and ym+1
def
= proxηg (x− ηF (ym))

for m = 1, . . . , k and let w
def
= proxηg (x− ηF (w)) be the implicit update, where η > 0 is any stepsize. Then,

‖w − yk‖ ≤ ηkLk‖w − x‖.

Proof. We show the claim by induction. For k = 0 it holds simply because y0
def
= x. If it holds for k − 1, let us

show it for k. By non-expansiveness of the proximal operator we have

‖w − yk‖ = ‖proxηg (x− ηF (w))− proxηg (x− ηF (yk−1)) ‖
≤ ‖x− ηF (w)− (x− ηF (yk−1))‖
= η‖F (w)− F (yk−1)‖
≤ ηL‖w − yk−1‖
≤ ηkLk‖w − x‖.

Proof of Theorem 2

First, let us introduce the following lemma that will be very useful in our analysis.

Lemma 1. Let g be µ–strongly convex and z = proxηg (x). Then for all y ∈ Rd the following inequality holds:

〈z − x, y − z〉 ≥ η
(
g(z)− g(y) +

µ

2
‖z − y‖2

)
. (4)

Proof. The lemma easily follows from the definitions. Indeed, since

z
def
= arg min

u
{ηg(u) +

1

2
‖u− x‖2},

we have necessary optimality condition 0 ∈ η∂g(z) + (z − x). Thus, by the definition of a subdifferential and by
strong convexity,

η(g(y)− g(z)) ≥ 〈x− z, y − z〉+
ηµ

2
‖z − y‖2

and the proof is complete.

In addition, let us also separately state how we are going to deal with the update variance.

Lemma 2. Let F (·; ξ) be almost surely monotone and assume that point x is such that σ2
x

def
= E‖F (x; ξ)−F (x)‖2 <

+∞, i.e., the variance of F at x is bounded. Then,

E
〈
F (x)− F (x; ξt), yt − x

〉
≤ ησ2

x +
1

4η
E‖yt − xt‖2.

Proof. As xt and ξt are independent random variables and EF (x; ξt) = F (x), we have

E
〈
F (x)− F (x; ξt), yt − x

〉
= E

〈
F (x)− F (x; ξt), xt − x

〉
+ E

〈
F (x)− F (x; ξt), yt − xt

〉
= E

〈
F (x)− F (x; ξt), yt − xt

〉
.



Konstantin Mishchenko, Dmitry Kovalev, Egor Shulgin, Peter Richtárik, Yura Malitsky

By Young’s inequality,

E
〈
F (x)− F (x; ξt), yt − xt

〉
≤ ηE‖F (x)− F (x; ξt)‖2 +

1

4η
E‖yt − xt‖2

= ησ2
x +

1

4η
E‖yt − xt‖2

and the proof is complete.

Now we are ready to prove Theorem 2.

Proof. By Lemma 1 for points yt = proxηg (xt − ηF (xt; ξt)) and xt+1 = proxηg (xt − ηF (yt; ξt)),〈
xt+1 − xt + ηF (yt; ξt), x∗ − xt+1

〉
≥ η

(
g(xt+1)− g(x∗) +

µ

2
‖xt+1 − x∗‖2

)
〈
yt − xt + ηF (xt; ξt), xt+1 − yt

〉
≥ η

(
g(yt)− g(xt+1) +

µ

2
‖xt+1 − yt‖2

)
.

Summing these two inequalities together and rearranging, we get

〈xt+1 − xt, x∗ − xt+1〉+ 〈yt − xt, xt+1 − yt〉+ η〈F (yt; ξt)− F (xt; ξt), yt − xt+1〉+ η〈F (yt; ξt), x∗ − yt〉

≥ η
(
g(yt)− g(x∗) +

µ

2
‖xt+1 − x∗‖2 +

µ

2
‖xt+1 − yt‖2

)
.

Using identity 2〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2 for the first two scalar products, we deduce

(1 + ηµ)‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − ‖xt − yt‖2 − (1 + ηµ)‖xt+1 − yt‖2

+ 2η〈F (yt; ξt)− F (xt; ξt), yt − xt+1〉 − 2η
(
〈F (yt; ξt), yt − x∗〉+ g(yt)− g(x∗)

)
.

The first scalar product can be simplified using Lipschitzness. Since F (·; ξt) is almost surely L–Lipschitz, by
Young’s inequality

2η〈F (yt; ξt)− F (xt; ξt), yt − xt+1〉 ≤ η

L
‖F (yt; ξt)− F (xt; ξt)‖2 + ηL‖yt − xt+1‖2

≤ ηL
(
‖xt+1 − yt‖2 + ‖yt − xt‖2

)
.

To get rid of the other scalar product, we use monotonicity of F (·; ξt), and then apply strong convexity of g,

〈F (yt; ξt), yt − x∗〉+ g(yt)− g(x∗) ≥ 〈F (x∗; ξt), yt − x∗〉+ g(yt)− g(x∗)

= 〈F (x∗), yt − x∗〉+ g(yt)− g(x∗) +
〈
F (x∗; ξt)− F (x∗), yt − x∗

〉
≥ µ

2
‖yt − x∗‖2 +

〈
F (x∗; ξt)− F (x∗), yt − x∗

〉
.

So far, the proof has not involved any expectation, but now we shall use Lemma 2 to deduce from the produced
bounds

(1 + ηµ)E‖xt+1 − x∗‖2 ≤ E
[
‖xt − x∗‖2 − ηµ

(
‖yt − x∗‖2 + ‖xt+1 − yt‖2

)]
+ 2η2σ2

− (1− ηL− 1
2 )︸ ︷︷ ︸

≥0

E‖yt − xt‖2

≤ E
[
‖xt − x∗‖2 − ηµ

(
‖yt − x∗‖2 + ‖xt+1 − yt‖2

)]
+ 2η2σ2.

Using inequality ‖a‖2 + ‖b‖2 ≥ 1
2‖a+ b‖2, we arrive at(

1 +
3

2
ηµ
)
‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + 2η2σ2.

Note that ηµ ≤ 1/2 and, therefore, 1
1+3ηµ/2 ≤ (1 − 2ηµ/3). The statement of the theorem can be now easily

obtained by induction.
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Proof of Theorem 3

Let x ∈ X . Similarly to the proof of Theorem 2, we can obtain from Lemma 1 with µ = 0

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ‖xt − yt‖2 − ‖xt+1 − yt‖2 + 2ηL(‖xt+1 − yt‖2 + ‖yt − xt‖2‖)
− 2η

(
〈F (yt; ξt), yt − x〉+ g(yt)− g(x)

)
≤ ‖xt − x‖2 − 1

2
‖xt − yt‖2 − ‖xt+1 − yt‖2

− 2η
(
〈F (yt; ξt), yt − x〉+ g(yt)− g(x)

)
.

By monotonicity of F (·; ξt) and Lemma 2 we deduce

E
〈
F (yt; ξt), x− yt

〉
≤ E

〈
F (x; ξt), x− yt

〉
≤ ησ2

x + E
〈
F (x), x− yt

〉
+

1

4η
E‖yt − xt‖2.

Therefore,

E
[
g(yt)− g(x) +

〈
F (x), yt − x

〉]
≤ 1

2η
E
[
‖xt − x‖2 − ‖xt+1 − x‖2

]
+ ησ2

x.

Telescoping this inequality, we obtain

E
1

t+ 1

t∑
k=0

(g(yk)− g(x) +
〈
F (x), yk − x

〉
) ≤ 1

2ηt
‖x0 − x‖2 + ησ2

x ≤ sup
z∈X

{
1

2ηt
‖x0 − z‖2 + ησ2

z

}
.

The left-hand side is a convex function yk. Therefore, choosing η = O
(

1√
t

)
and applying Jensen’s inequality to

the left-hand side, we get the claim.

Proof of Theorem 4

Proof. Since the function is bilinear, we can write

∇xf(x, y) = B(y − y∗), ∇yf(x, y) = B>(x− x∗).

Then, we obtain the explicit update rules

xt+1 = xt − η2B(vt − y∗) = xt − η2B(yt − y∗ + η1B
>(xt − x∗))

yt+1 = yt + η2B
>(ut − x∗) = yt + η2B

>(xt − x∗ − η1B(yt − y∗)).

In matrix forms it is [
xt+1 − x∗
yt+1 − y∗

]
=

(
I− η1η2BB> −η2B

η2B
> I− η1ηB>B

)[
xt − x∗
yt − y∗

]
Apply SVD decomposition to B: B = UΣV>, where U and V are orthogonal and Σ = diag(σ1, . . . , σn). Then,∥∥∥∥[xt+1 − x∗

yt+1 − y∗
]∥∥∥∥ ≤ ∥∥∥∥(I− η1η2BB> −η2B

η2B
> I− η1η2B>B

)∥∥∥∥∥∥∥∥[xt − x∗yt − y∗
]∥∥∥∥ .

Since U and V are orthogonal, we have

BB> = UΣ2V>,

B>B = VΣ2U>,
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and ∥∥∥∥(I− η1ηBB> −η2B
η2B

> I− η1ηB>B

)∥∥∥∥ =

∥∥∥∥(U 0
0 V

)(
I− η1ηΣ2 −η2Σ

η2Σ I− η1ηΣ2

)(
U> 0
0 V>

)∥∥∥∥
=

∥∥∥∥(I− η1η2Σ2 −η2Σ
η2Σ I− η1η2Σ2

)∥∥∥∥
= max

i

∥∥∥∥(1− η1η2σ2
i −η2σi

η2σi 1− η1η2σ2
i

)∥∥∥∥
= max

i

√
(1− η1η2σ2

i )2 + η22σ
2
i .

Assume without loss of generality that σ1 ≥ · · · ≥ σn. Note that function x 7→
(

1− η1
η2
x2
)2

+x2 is monotonically

decreasing on (0, c) and monotonically increasing on (c,+∞), where c is +∞ if η2 ≥ 2η1 and η2√
2η1

√
2η1η2 − 1

otherwise. Consequently, it holds

max
i
{(1− η1η2σ2

i )2 + η22σ
2
i } = max{(1− η1η2σ2

1)2 + η22σ
2
1 , (1− η1η2σ2

n)2 + η22σ
2
n}.

Proof of Corollary 1

Proof. These statements follow from the bound obtained in Theorem 4. Since function (1−x2)2 +x2 monotoni-

cally decreases when x ∈
(

0, 1√
2

)
, we have ρ = (1−η1η2σmin(B)2)2+η22σmin(B)2 =

(
1− σmin(B)2

2σmax(B)2

)2
+ σmin(B)2

2σmax(B)2 .

The second case follows similarly.

A.1 Negative momentum

For bilinear problems with two types of momentum the update recurrence is
xt+1 − x∗
yt+1 − y∗
xt − x∗
yt − y∗

 =


(1 + β2)I− η1η2BB> −η2(1 + β1)B −β2I η2β1B

η2(1 + β1)B> (1 + β2)I− η1ηB>B −η2β1I −β2I
I 0 0 0
0 I 0 0



xt − x∗
yt − y∗
xt−1 − x∗
yt−1 − y∗

 .
Using SVD decomposition, we can represent the above matrix as block-diagonal with blocks Ti

Ti =


1 + β2 − η1η2σ2

i −η2(1 + β1)σi −β2 η2β1σi
η2(1 + β1)σi 1 + β2 − η1ησ2

i −η2β1 −β2
1 0 0 0
0 1 0 0

 , (5)

where σi is the i-th the singular value of B.

One can show that the spectral radius of this matrix improves with negative β2, however this is not true for its
second norm. Since this is a very technical property that can be easily illustrated numerically, we simply provided
a plot of how spectral radius changes depending on values of ησ and β2 when β = 1 = 0 and η1 = η2 = η, see
Figure 5. In addition, here we provide the heatmap for η1 = η2 and product ησ = 0.01. As can be seen from
Figure 6, nonzero β1 is not very promising and β2 leads only to a small improvement. Thus, it gives advantage
mainly for large values of ησ.

A.2 Proof of Theorem 5

Let us introduce a notation that simplifies the proof. We will denote by Et the expectation conditioned on xt,
i.e., Et[·] = E[· | xt].
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Figure 6: Ratio of spectral radii as in Figure 5 but with fixed ησ = 0.01 and different values of β1 and β2.

Proof. Recall that yt = xt − η∇f(xt; ξt), xt+1 = xt − η∇f(yt; ξt), and apply smoothness of f to xt+1 and xt:

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+
L

2
‖xt+1 − xt‖2

= f(xt)− η‖∇f(xt)‖2 + η
〈
∇f(xt),∇f(xt)−∇f(yt; ξt)

〉
+
Lη2

2
‖∇f(yt; ξt)‖2.

Since ∇f(xt; ξt) is an unbiased estimate of ∇f(xt), it follows by Young’s inequality and smoothness of f(·; ξt)

η
〈
∇f(xt),∇f(xt)−∇f(yt; ξt)

〉
= Etη

〈
∇f(xt),∇f(xt; ξt)−∇f(yt; ξt)

〉
≤ η2L

2
‖∇f(xt)‖2 +

1

2L
Et‖∇f(xt; ξt)−∇f(yt; ξt)‖2

≤ η2L

2
‖∇f(xt)‖2 +

L

2
Et‖xt − yt‖2

=
η2L

2
‖∇f(xt)‖2 +

η2L

2
Et‖∇f(yt; ξt)‖2.

Moreover, similar arguments show how to bound the expectation of the squared gradient norm:

Et‖∇f(yt; ξt)‖2 ≤ 2Et‖∇f(yt; ξt)−∇f(xt; ξt)‖2 + 2Et‖∇f(xt; ξt)‖2

≤ 2L2Et‖yt − xt‖2 + 2Et‖∇f(xt; ξt)‖2

= 2(1 + L2η2)Et‖∇f(xt; ξt)‖2

≤ 2(1 + L2η2)(‖∇f(xt)‖2 + σ2).

Thus,

Etf(xt+1) ≤ f(xt)− η
[
1− ηL− 2ηL(1 + η2L2)

]
‖∇f(xt)‖2 + 2η2L(1 + η2L2)σ2.

If ηL ≤ 1
4 , we have 1− ηL− 2ηL(1 + η2L2) > 1

5 , so this bound can be simplified to

‖∇f(xt)‖2 ≤ 5

η
Et[f(xt)− f(xt+1)] + 11ηLσ2.



Konstantin Mishchenko, Dmitry Kovalev, Egor Shulgin, Peter Richtárik, Yura Malitsky

Figure 7: Samples from generator after training for 20,000 iterations of minibatch 512 with extragradient. Both
generator and discriminator are 4-layers neural networks with tanh activation and the dimension of the noise
distribution is 256.

Telescoping this inequality from 0 to t− 1 and taking full expectation with respect to all randomness, we get

1

t

t−1∑
k=0

E‖∇f(xk)‖2 ≤ 5

ηt
(f(x0)− f(xt)) + 11ηLσ2

≤ 5

ηt
(f(x0)− f∗) + 11ηLσ2.

It remains to mention that the left-hand side is exactly the expectation of E‖∇f(x̂t)‖2.

B Additional experiments

B.1 Reproducing mixture of eight Gaussians

We also double check that extragradient converges on the mixture of 8 Gaussians. This experiment is a sanity
that allows us to show that the method can do at least as well as alternating gradient (Gidel et al., 2019b). To
directly relate to their experiments, we ran extragradient on the same type of network, although we changed
activation from ReLU to tanh, which was more stable in our experiments. Note that (Gidel et al., 2019b) ran
alternating method for 100,000 iterations, while we required only 20,000, which corresponds to 40,000 generator
updates. The result is presented in Figure 7.

B.2 Empirical risk minimization

As our theory suggests, stochastic extragradient might not be better than SGD when solving a simple task
such as function minimization. To see how it works in practice, we trained Residual Network (He et al., 2016),
Resnet-18, on Cifar10 (Krizhevsky and Hinton, 2009) dataset with cross-entropy loss and different stepsizes, and
compared the results to SGD. In order to see the effect of the update rule, we do not use any type of momentum
in this experiment and keep the learning rate constant. Our observation in this situation is that extragradient
is indeed slower, both because of the need to compute two gradients per iterations and because of worse final
accuracy.

B.3 Samples of generated images
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Figure 8: Comparison of the proposed stochastic extragradient and stochastic gradient descent when optimizing
Residual Network with 18 hidden layers on Cifar10 dataset. We report only the train loss as this is the most
relevant metric for an optimization method, and test accuracy in this experiment behaved similarly.

Figure 9: Adam (top) and ExtraAdam (bottom) results of training self attention GAN for two epochs. The
results of training with the three best performing stepsizes, 10−3, 2 · 10−3, 4 · 10−3, are provided for each method
(from the left to the right). Best seen in color by zooming on a computer screen.
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