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Time-Varying Decentralized Minimization

SETUP: G* = (V, £F) — undirected connected networks, where
oV =1{1,...,n} is a set of computing nodes,

o £F C V x V is a sequence of communication links.

Figure 1: A sample time-varying network with n = 20 nodes.

Each node i € V owns function f;: R — R, which is L-smooth
and p-strongly convex.

GOAL: Find solution of the minimization problem

min » _ fi(x). (1)
cV
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Fach node ¢ € V is allowed to calculate V f;(x) and communicate
O(1) vectors of size d with neighbors along the links e € &,

Problem Reformulation

Consider function F': (R%)Y — R defined by
F(z) =) fi(z;), where z=(21,...,3,) € (RN,
IS
Consider also a sequence of nd X nd matrices

A

W(k) =W(k)®1,

where T is d x d identity matrix and W (k) is an n X n matrix
which satisfies the following properties:

1) W(k) is symmetric positive semi-definite,

2) Wii(k) # 0 if and only if i = j or (i,5) € &,

3) ker W (k) = span({(1,...,1) € R"}).

We are going to call W(k) a gossip matrix. Note that de-

centralized communication at time step k can be represented as
multiplication of W (k) by vector x = (1, ...,x,) € (RY):

y=(y1,...

Problem (1) can be reformulated as a lifted problem with
consensus constraints:

min F'(x), (1a)
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where £ = {(z1,...,2,) € (R)Y 12y =--- = x,}.
By ¥ = (2,...,%2) € (RY)Y we denote the solution to Problem
(1a), where £ € R? is the solution to Problem (1).
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yn) = W(k)z = y; € span({z; : j is neighbor of ¢}).

ADOM: Accelerated Decentralized Optimization
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Dual Problem

Problem (1a) has an equivalent dual formulation of the form

min F*(2), (2)

et

where F'* is the Fenchel transform of F' and £+ C (R%)Y is the
orthogonal complement to the space L, given as follows:

L+ = {(zl,...,zn) € (]Rd)vzzn:zi:()}.

Function F*(z) is i—smooth and %—strongly convex. Hence, prob-
lem (2) also has a unique solution, which we denote as z* € £+,

Communication as a Compression Operator

Let @ be a linear space. A mapping C: Q — Q is called a
compression operator if there exists o € (0, 1] such that

1C(2) — z||* < (1 = 6)||2||* forall z€ Q.

The following lemma shows that matrix-vector multiplication by
gossip matrix W (k) is a contractive compression operator acting
on the subspace £+.

Lemma (Main Idea)

Let 0 € (0,1/Anax), & € {0,1,2...}. Then the following
inequality holds for all z € £+

oW (k)2 — 2||" < (1 — oAg,) 121"

min
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Accelerated Algorithm with Guarantees

Our algorithm uses the dual oracle, and is based on a careful gen-
eralization of the Projected Nesterov Gradient Descent.
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Algorithm 1 ADOM

1. input: 2 ¢ £t m’ ¢ (RYY, a,n,0,0>0,7€(0,1)
2. set zgl = 2!
3: for k=0,1,2,... do

4 z;f =724+ (1 — T)zjli

5 AF = oW (k)(m" — nVF*(z}))
6. mf=ml — V() — A"
o 2 =2 na(zy — 2F) + A
8 zjﬁ“ = z) — OW(k)VF*(z))

9. end for

Method combines ideas of biased compression with error-feedback
mechanism and acceleration.

Set parameters a,n, 0,0, 7 of Algorithm 1 to a = i, n =

2)‘r—|;1in\/ L — I — 1 — ij_lin M
Ao 0 = R O = W @A T = W\/% Then there

exists C' > 0, such that

AC "
x( _k * (]2 min
wre -t <o (1- 2 )

and A\« refer to bounds for the largest and to the
smallest positive eigenvalue respectively

_|_

where A\

A

AT < A (W(k» < )\maX(W(k» < )\max

min min

Comparison with Previous Methods

Table 1: A review of decentralized optimization algorithms capable of working
in the time-varying network regime, with guarantees. Complexity terms high-
lighted in red represent the best known dependencies. Our method is the only al-

gorithm with best known dependencies in all terms (k = L/, X = Apaxc/ A ).

min

Algorithm |Communication complexity
DIGing [1] O (nl/QXQKB/Zlog %)
PANDA [2] O (1 log 1)

Acc-DNGD [3] O (x*?:/log 1)
APM [4] O (Xlil/Q log” %)
Mudag [5] O (X/il/Q log(k)log %)

<Ai§§fhf 1) O (xn'*1os )

ADOM achieves the new state-of-the-art rate for de-
centralized optimization over time-varying networks.
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Numerical Experiments

We compare with the best previous methods on the logistic regres-
sion problem with ¢y regularization:

1 & r
filx) = — Z log(1 + exp(—bija;jx)) - §HxH2
=1

To simulate a time-varying network, we use geometric random

graphs and choose matrix W (k) as the Laplacian. ADOM needs

dual gradients V F*(z;), which are calculated inexactly using 7'(<

3 sufficient in our case) iterations of gradient method for problem:
VF*(Z];) = iréér;)igl F(x) — (x, z§>
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ADOM converges linearly and outperforms all known
algorithms for every set of parameters.

Next we compare against the Distributed Nesterov Method
(DNM) [6], which has an O(4/k) dependence on k. We use syn-
thetic data and switch between two geometric graphs (x & 400)
every t 1terations.

network change every 50 iterations network change every 10 iterations
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Comparison of ADOM and DNM on a problem with x = 30 and number of
features d = 40.

ADOM always converges, unlike DNM.

More experimental results (including real networks) in the paper [7].
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